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Abstract. The best way to explain a theory is to give a simple example
that illustrates the theory: that is the fundamental insight behind inform-
ing by example (IbE). Using a systematic separation between datasets
and their models it is shown that IbE has a wide field of applications
both in empirical setting (learning from small data sets using standard
compression algorithms) as in the more theoretical context of Shannon
information systems and Turing systems. For Turing systems the models
selected by IbE satify Zellner’s information conservation criterion.

1 Introduction

In this paper we introduce, what we believe to be, a new approach to machine
learning and theory formation that we call ’Informing by Example”: the best
model for a system is a typical example.

Example 1. An example would be Bohr’s model of the atom as a small solar
system. The example is very simple (one sun, one planet) but it allows us to
apply classical mechanics on a sub-atomic level. It also helps us to formulate
new theories (electron jumps)

Simple examples of complex things have value. We can use them to explain
phenomena and to discover new knowledge.

Example 2. Any mathematician will immediately recognize the Fibonacci se-
quence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181....
A relevant question is: How many examples do we need to recognize this se-
quence. If we use WoframAlpha as our pattern recognizer the answer is 5. The
program recognizes the sequence 0, 1, 1, 2, 3 as Fibonacci, but interprets 0, 1, 1, 2
as just a sequence of numbers without any significance. Apparently the sequence
0, 1, 1, 2, 3 contains, in the mathematical context of WolframAlpha, enough in-
formation to identify the basic recursive operation that defines the Fibonacci
sequence. It contains, in this context, sufficient information to tell us everything
there is to know about Fibonacci numbers. Since it is also the simplest example
it is in some sense the ’best’ example.



A theory about quality of models can be derived from Bayes’ law and Shan-
non’s notion of information. Let M be a set of hypotheses and let x be a data
set. Using Bayes’ law, the optimal computational model under this distribution
would be:

Mmap(x) = argmaxM∈M
P (M)P (x|M)

P (x)
(1)

under the constraint P (x) ≥ P (M)P (x|M). This is equivalent to optimizing:

argminM∈M − logP (M)− logP (x|M) (2)

under the constraint − logP (x) ≤ − logP (M) − logP (x|M). Here − logP (M)
can be interpreted as the length of the optimal model code in Shannon’s sense
and − logP (D|M) as the length of the optimal data-to-model code; i.e. the data
interpreted with help of the model.

This suggests that learning an optimal model is a form of data compression
under constraints. For the optimal model the following should hold− logP (M |x) =
− logP (M)− logP (x|M) + logP (x) which is equivalent to:

Definition 1 (Zellner’s Information conservation principle).

I(x) + I(M |x) = i(M) + I(x|M) (3)

This suggests the following interpretation: the information needed to extract
a theory from a data set is the surplus of information that the theory adds to
the data set. If the theory is optimal, then the sum of the model code and the
data-to-model code are in balance with the optimal code of the data. In this case
the model can be derived directly from the data. The additional information is
zero bits which makes the conditional probability of the theory given the data
1.

The best model for a data set is the smallest data set from which an optimal
theory can be derived.

Definition 2 (Informing by Example (IbE)). The best theory to explain a
set of data is the one which minimizes the sum of:

– the length of an example data set from which the theory can be derived and
– the length of the data when encoded with the help of the theory.

The essence of informing by example is that we do not measure the model
complexity, instead we rank the models by their example sets.

Example 3. Consider this data set:

3.14159265358979323846264338327950288419716939937510582097494

which consists of the 60 digits of the number π. We measure the complexity of
the example as a sequence of digits (i.e. l(S)log210). It could be from various
classes of data sets (i.e. initial segments of real numbers, or initial segments



of wellknown mathematical constants). Using IbE we need a model compressor
q that recognizes the data set as an expansion of π. We are not specifically
interested in the complexity of q nor in the complexity of a small generating
program p for the digits of π. What is of interest is the following: if q can identify
π from its first 60 digits of π then probably also from the first 40 or 30. So what
is the smallest amount of digits we need to feed to q before it greedily guesses
π? Note that, even with 60 or any other finite number of digits, identifying the
sequence as π is greedy. Lets use WolframAlpha as our greedy data constructor
q. We find that it needs at least 4 digits. Then our IbE complexity becomes
something like ”Expand example ’3.141’ to 60 digits”, where ’3.141’ is the model
code and ”Expand example ... to 60 digits” is the data to model code. Even in
plain ASCII this is shorter than the original data set. A more formal estimate
would be: 3.141 + log2 60 +O(1) = 4 log2 10 + log2 60 +O(1) ≈ 26 + c bits, where
c is a constant number of bits for the expand instruction.

2 Formal Definition of IbE

Definition 3 (IbE problem class).
An IbE problem class is a tuple p =< D,M, dm,mm,ms > with

– A class of data sets D.
– A class of models M.
– A data measurement function dm.
– A data-to-model measurement function mm.
– A model selector ms

with de following defininitions:

Definition 4 (A class of Data Sets). A countable class of data sets D with
a partial order � and a minimal element ∅.

Definition 5 (A class of Models). A possibbly uncountable class of models
M.

Definition 6 (A Data Measure). A data measurement function dm : D → R,
where D is a class of data sets, with ∀x, y,∈ D(x � y ⇒ dm(x) ≤ dm(y)) and
dm(∅) = 0.

Definition 7 (A Data to Model Measure). A data to model measurement
function mm : (D×M)→ R. This function gives the conditional compresion of
a data set given a model.

Definition 8 (Model Selector). Given a set of data sets D and a set of models
M, a model selector is a function mc : D → M. More data sets can have the
same model. The Representeation Bias Function ms−1 : M → P(D) gives us
the set of data sets with the same model.



The operation ms−1(ms(M)) gives the Representional Bias of a data selec-
tor, which indicates how ’greedy’ the compressor is. It gives us for any set the
set of data sets with the same model as a given data set.

Definition 9 (IbE problem).
Given an IbE problem class p =< D,M, dm,mm,ms > an IbE problem for
x ∈ D is:

MIbE(x, p) = argmind∈D dm(d) +mm(x,ms(d)) (4)

The solution to a IbE problem is the set of smallest examples that minimize
the sum of the model code and the data to model code. It is now possible to give
an objective measure for the relative amount of meaningful or useful information
in a data set.

Definition 10 (Facticity, relative to an IbE problem).
Let p =< D,M, dm,mm,ms > be an IbE problem class, given the fact that
all the smallest examples i in MIbE(x, p) have the same length l = dm(i) the
amount of model information or facticity of the problem MIbE(x, p) is:

φp(x) = − log2Σi∈MIbE(x,p)2
−dm(i) = − log2 |MIbE(x, p)|2−l (5)

i.e. uniform length l = dm(i) of all small examples penalized by their bias (i.e.
the number of optimal examples |MIbE(x, p)|).

The definition is descriptive, not constructive: it specifies what the best mod-
els are, not how to find them. For an implementation of IbE we need to specify a
search routine that constructs an optimal example set. The next lemma specifies
the conditions under which this is possible:

Theorem 1 (Facticity is recursive for IbE).
Let p =< D,M, dm,mm,ms > be an IbE problem. If the functions �, dm, mm,
ms and mc are recursive then MIbE(x, p) and φp(x) are recursive.

Proof: We only need to investigate data sets smaller then d. For all d ∈ D the
number of elements di � d is finite, so the set can be enumerated. Since the
functions are recursive we can compute the IbE estimate for each element and
collect the smallest ones. �

2.1 Discussion

Informing by example deploys two notions of compression or data abstraction.
An effective form of weak compression performed by the model selector function
ms (weak generalization) and a compression based on an exhausitive search by
the argmin function that, depending on the knowlegde representation, often will
be exponential or worse in complexity (strong generalization). The exhaustive
search will in most cases be replaced by some heuristics. The balance between
these two forms of generalization is essential. The exhaustive search searchest the
example that makes the best use of the bias of the model compressor. The more



greedy the compressor is, the smaller the guiding example can be, but the bigger
the risk is that it overgeneralizes beyond the optimal model. In terms of human
cognition one could say that the model compression function is the pattern
recognition function our brain and the exhaustive search process is science itself.
Once we have found a regularity in nature we memorize it as a paradigm: a
small example form which we can derive the pattern. The bias of our pattern
recognition skills are optimized by a process of evolution. The advantages of the
IbE approach are clear:

– It gives objective computable estimates of the model code length.
– Model code and data to model code both are measured in terms of complexity

of data sets and therefore balanced.
– It works for small data sets.
– It is computable for a large domain of problem classes.
– The notion of a simplest example seems from a cognitive point of view in

line with the way human cognition works (c.f. Kuhn’s notion of a paradigm).

There are also disadvantages:

– There might not be a small example that represents the true model class.
– Simple examples might be very large in comparison to their optimal descrip-

tive complexity.

3 IbE for Shannon systems of messages

Suppose we have a discrete random variable X with possible values {x1, ..., xk}
and probability mass function P (X) then the entropy is:

H(P ) = H(X) = −
∑
x∈X

P (x)log2P (x) (6)

The average entropy per message is the rate:

r = lim
n→∞

1

n
X1, X,..., Xn (7)

The absolute rate is R = log |X|. The absolute redundancy is D = R− r.

Definition 11 (IbE Shannon sequence problem class).
An IbE Shannon problem class is a tuple

pShannonSequence =< D,M, dm,mm,ms >

with

– A class of data sets D = {x1, ..., xk}∗, i.e. the set of all finite sequences of
messages, with a partial order x � y iff |x| < |y| and ∀xi(xi ∈ x→ xi ∈ y).

– A class of models the set M = PX of all finite probability distributions on
X.



– A data measurement function dm : D → R, with x � y ⇒ dm(x) ≤ dm(y).
In this case ∀x ∈ D dm(x) = l(x) log2 k.

– A data-to-model measurement function mm : (D ×M) → R. ∀x ∈ D ∀P ∈
M mm(x) = l(x)rP where rP is the rate defined by P .

– A model selector ms : D →M. In this case the Maximum Likelyhood func-

tion for x ∈M = PX the estimate is P (xi) = freq(xi)
l(x) .

Lemma 1. For the Shannon problem class ps =< D,M, dm,mm,ms > the
problem MIbE(x, ps) and its facticity φps

(x) are recursive.

Proof: instance of theorem ??. �
Heuristics for finfing a good estimate of the optimal IbE model could in-

volve discretization of the distribution. A model M with k parameters contains
uncountably many distributions but only in the order of 2(

k
2 ) logn = n

k
2 differ

signiticantly on a sequence of length n ?] ?].

Example 4. Consider an unfair 4-sided dice, with P (1) = 0.5, P (2) = 0.125, P (3) =
0.125, P (4) = 0.25. A simple sequence from which we can learn this distribution
is: 11114423: i.e. ms(”11114423”) = P . This gives P (1) = 4

8 = 0.5, P (2) =
1
8 = 0.125, P (3) = 1

8 = 0.125, P (4) = 2
8 = 0.25. The entropy then is H(X) =

0.5log20.5 + 0.25log20.25 + 0.125log20.125 + 0.125log20.125 = 1.75 with D =
log2 4 − 1.75 = 0.25. The length of a simle example is 8 log2 4 = 16 bits.
ms−1(ms(”11114423”)) is the set with the same distributions.

The argmin function will construct the set of smallest examples with the
same distribution as ”11114423”. This class has

(
6
2

)
+7+8 = 30 elements, which

gives a faciticty in bits of

φp(”44444423”) = − log2Σi∈MIbE(x,p)2
−|i| = − log2

30

216
≈ 11

The simplest example for a uniform distribution of k messages is a string of
k different messages

φp(”x1x2...xk”) = − log2Σi∈MIbE(x,p)2
−|i| = − log2

k!

2k log2 k
= − log k−kk!

log2 k

This is in the same order of magnitude as k. (e.g. for a sequence x with 1000
different messages phip(x) ≈ 1436. So uniform discributions have in this interpre-
tation model codes with a length in the order of the number of messages. A single
string with 1000 different message would have a length of 1000log21000 ≈ 10.000
bits. According to the coupon collector theorem we need at least k log k samples
in order to collect each messages. which gives a sequence of k(log k)2 bits, which
leads to a sample of 100.000, so the 1400 bit facticity is quite acceptable.

Note that the facticity is depreciated by the fact that many strings generate
the same estimate for a distribution. This could be mended by definining IbE in
multisets of messages in stead of sequences. The minimal example then would
be a multiset of messages that has a one to one correspondence to an estimated
distribution and a much more compact code. The general picture that emerges



is that a richer model class and a better model selector produce better learning
results. In the following paragraph we investigate IbE in the context the most
general class of model: partial recursive functions.

4 IbE for Turing systems

In this section we use latin lowercas x, y, z to indicate strings and greek lowercase
α, β, γ to indicate models (i.e. pre-fix free strings that act as programs for a
universal Turing machine)

Definition 12 (IbE Turing problem class).
An IbE Turing problem class is a tuple

pTuring =< D,M, dm,mm,ms >

with

– A class of data sets D = {0, 1}∗, i.e. the set of all finite binary strings, with
a partial order x � y iff l(x) < l(y).

– A class of models: A prefix-free self delimiting codeM for a universal Turing
machine TU .

– A data measurement function dm(x) = l(x),
– A data-to-model measurement function mm(x, α) = l(z) where z = mini(i ∈
D ∧ TU (αi) = x).

– A model selector ms : D →M. In this case a function that assigns to each
binary string exactly one corresponding prefix-free string: ms(x) = x.

For the Turing problem class pt =< D,M, dm,mm,ms > the problem
MIbE(x, ps) and its facticity φpt(x) are not recursive. Specifically the model
measurement function mm is not recursive because it would involve running any
program on any input.

Lemma 2. The models selected by MIbE(x, pt) satisfy Zellner’s information
conservation criterion I(x) + I(M |x) = i(M) + I(x|M).

Proof:
MIbE(x, pt) = argmind∈D dm(d) +mm(x,ms(d))

= argmind∈D l(d) +mm(x, d)

Since mm(x, d) = l(z) where z = mini(i ∈ D ∧ TU (di) = x) this amounts to:

MIbE(x, pt) = argmind,e∈D

{
l(d) + l(e)

where TU (de) = x

Since the model selector is one to one the extra bits making the code self-
delimiting do not contain any information I(x) = I(de) = l(d)+l(e), I(M) = l(d)
and I(x|M) = l(e) this satisfies Zellner’s Information conservation principle (c.f.
definition ??), for I(M |x) = 0, i.e. the model is defined by the data. �



Definition 13 (IbE problem).
Given an IbE problem class p =< D,M, dm,mm,ms > an IbE problem for
x ∈ D is:

MIbE(x, p) = argmind∈D dm(d) +mm(x,ms(d)) (8)
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