
The Modeling Chasm: Counting Turing
Machines using Occam’s razor

Pieter Adriaans1

FNWI
University of Amsterdam,

Science Park 107
1098 XG Amsterdam,

The Netherlands. P.W.Adriaans@uva.nl

Abstract.

keywords: Two-part code optimization, facticity, Occam’s Razor, Turing Ma-
chines, Kolmogorov complexity, randomness, compressibility.

1 Introduction

A number of authors have suggested that the amount of model information in a
binary string can be measured as the length of the optimal model code under two-
part optimization ([3], [6], [11], [2], [1]). Two-part code optimization can be seen
as a variant of the Minimum Description Length principle (MDL [8]) where one
defines the optimal computational model for a data set as the Turing Machine
(TM) that 1) produces the data set and 2) minimizes the sum of its description
(the Model code) and the length of its input (the Data to Model code). These
attempts have been marginally successful due to the following problems:

1. It is unclear how and why machine indexes and input code should be bal-
anced. Can one balance indexes of computational models with binary input
strings on a bit by bit basis? There are signs that MDL does not perform
optimally in many circumstances [7], which gives cause for concern.

2. Unlike the traditional theory of Kolmogorov complexity, where the choice
of a reference universal Turing machine evens out asymptotically [12], any
theory that balances the length of indexes of Turing machines with the length
of Data to Model code appears to be extremely sensitive to the choice of a
reference Turing machine. An extreme example is the so-called Nickname
problem ”(...) in which a particular TM which is constructed to contain the
string x in its state description is given a low index, and thus achieves the
minimal two-part coding” [5].

In this paper enumerations of Turing machine satisfying, what is called, Occam’s
condition are studied: machines are ordered according to their number of states.
This facilitates the analysis of asymptotic behavior of classes of Turing machines
and their indexes [9]. It is shown that under Occam’s condition

It introduces facticity as a formal method to measure the amount of model
information in a string. It is shown that the adoption The non-robustness, which
with hindsight, is more a feature than a bug will be treated in a future publica-
tion. It is shown that

The fact that all Turing machines can be enumerated is essential in Alan
Turing’s proof of the existence of uncomputable numbers. Ever since, in com-
puter science the length of an index of a Turing machine is commonly used as
a measure for its complexity. Also it is commonly assumed that a string can
be produced by a machine with a comparable index length. One way to order
Turing machines is by applying Occam’s razor: machines with less states get
lower numbers. Such an ’Occam condition’ seems plausible: machines with fewer
states are in a way less complex. One should only introduce new states when
necessary. Thus Occam’s razor automatically forces a kind of parsimony when
selecting models. In this paper it is shown that this use of indexes, even when ap-
plying Occam’s razor, is far from harmless. Under Occam’s principle the chasm
between the length of a string and its computational model can in the limit be
arbitrary large.

2 Definitions

Let x, y, z ∈ N, where N denotes the natural numbers and we identify N and
{0, 1}∗ according to the correspondence

(0, ε), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here ε denotes the empty word. The length |x| of x is the number of bits in the
binary string x, not to be confused with the cardinality |S| of a finite set S.

2.1 One-part code complexity

The standard reference [12] for the definitions concerning Kolmogorov complex-
ity is followed. K is the prefix-free Kolmogorov complexity of a binary string. It
is defined as:

Definition 1. K(x|y) = mini{|i| : U(iy) = x}

i.e. the shortest self-delimiting index of a Turing machine Ti that produces x
on input y, where i ∈ {1, 2, ...} and y ∈ {0, 1}∗. Here |i| is the length of a
self-delimiting code of an index and U is a universal Turing machine that runs
program y after interpreting i. The length of |i| is limited for practical purposes
by n+ 2 log n+ 1, where n = |i|. The actual Kolmogorov complexity of a string
is defined as the one-part code that is the result of, what one could call, the:

Definition 2 (Forcing operation). K(x) = K(x|ε)

Here all the compressed information, model as well as noise, is forced on to the
model part.

2.2 Balanced two-part code complexity

The reason to use i in U(iy) = x lies in the fact that it allows us to separate
the concatenation ip into its constituent parts, i and p. Here i is the index of a
Turing machine which can be seen as capturing the regular part of the string x,
and p describes the input for the machine, i.e. the irregular part, e.g. errors in
the model, noise and other missing information. Based on this insight one can
define a balanced two-part code complexity. The length of the regular part is
defined as the:

Definition 3 (Facticity). ϕ(x) = min(i,j){|i| : U(ij) = x}

The length of the irregular part is defined as the:

Definition 4 (Residual entropy). ρ(x) = min(i,j){|j| : U(ij) = x}

Note that these definitions suppose that the term ij is minimized, i.e. there is
an optimal separation between model information and noise.

2.3 Turing machines

The following definitions can be found in [10]. A Turing machine (TM) is de-
scribed by a 7-tuple

M = (Q,Σ, Γ, δ, q0, B, F)

Here, as usual, Q is the finite set of states, Σ is the finite set of input symbols
with Σ ⊂ Γ , where Γ is the complete set of tape symbols, δ is a transition
function such that δ(q,X) = (p, Y,D), if it is defined, where p ∈ Q is the next
state, X ∈ Γ is the symbol read in the cell being scanned, Y ∈ Γ is the symbol
written in the cell being scanned, D ∈ {L,R} is the direction of the move, either
left or right, q0 ∈ Q is the start state, B ∈ Γ −Σ is the blank default symbol on
the tape and F ⊂ Q is the set of accepting states. A move of a TM is determined
by the current content of the cell that is scanned and the state the machine is
in. It consists of three parts:

1. Change state

2. Write a tape symbol in the current cell

3. Move the read-write head to the tape cell on the left or right

3 Counting Turing machines

The class of Turing machines is countable. A specific machine can be referenced
by means of a natural number. There are many ways to count Turing machines
but in the following it will only be assumed that our ordering of machines ob-
serves the number of states:

Definition 5 (Occam’s Condition). For each i ∈ N the tuple

Mi = (Qi, Σi, Γi, δi, q0i, Bi, Fj)

is the Turing machine with index i. Occam’s condition is observed when it is the
case that |Qj | > |Qi| for all Mj such that j > i.

Here |Qj | is the cardinality of the set Qj . This can be seen as a variant
of Occam’s razor: a preference for machines with small indexes is a preference
for machines with fewer states. In the following machines that use binary input
code {0, 1} will be studied. They have binary strings as indexes using the stan-
dard mapping from natural numbers to strings. The following theorem gives an
estimate lower bounds for the length of the indexes:

Theorem 1. Under Occam’s condition a deterministic Turing machine with
k > 2 states has an index of at least 7.8 bits and this length grows super-linearly
with a factor of at least (k − 1) log2(k − 1).

Proof: The amount δ-relations is used to estimate lower bounds for the complex-
ity of Turing machines with k states. Let

I = #input-states× #input-symbols = k × 3

be the state symbol-complexity for k states and the O the possible set of moves
per state-symbol combination, then OI is the amount of possible delta-functions.
For deterministic Turing machines this amounts to:

O = #output-states× #output-symbols× #left-right-moves = k × 3× 2

This gives (6k)3k as a lower bound for the amount of machines with k states.
Because of Occam’s condition in definition 5 a machine with k states has at least
an index after number

∑k−1
i=1 (6i)3i > (6(k − 1))3(k−1). A binary index for such

an index had at least the following length:

log2(6(k − 1))3(k−1) = 3(k − 1)(log2 6 + log2(k − 1)) >

(k − 1) log2(k − 1)

Note that already for small values of k the index is blown up by a factor of
at least 3 log2 6 ≈ 7.8(k − 1). �

This analysis triggers a number of observations.
Observation 1: under Occam’s condition there are exactly 216 one-state

Turing machines of the form:

Mi = ({q0}, {0, 1}, {0, 1, b}, δi, q0, {b}, {q0})

for which the start state and the accepting state are identical. Since they all
start in the accepting state they never make a move so their observable behavior

is identical. They differ only in the definition of the vacuous δ-function, of which
there are:

(#output-symbols× #left-right-moves)#input-symbols = (3× 2)3 = 216

different versions. Since the behavior of all these 216 machines is equivalent, an
arbitrary machine can be chosen to be the first:

Definition 6. M1 = ({q0}, {0, 1}, {0, 1, b}, δ1, q0, {b}, {q0}) is the first Turing
Machine.

Under any counting scheme that observes Occam’s condition the first determin-
istic machine with two states is M217.

Observation 2: Each binary string x of length k has a set of sequential print
machines that simply write down the string:

Definition 7 (Sequential print machine). Every string x can be generated
by each member of a set of machines Mx with the following structure: Mx has
k + 1 states and the delta function contains the following operations (only the
relevant part of the function is given):

(δ(qs, b) = (q2, x1, r),
(...),
δ(qi, b) = (qi+1, xi, r),
(...),
δ(qk, b) = (qa, xk, r))
i.e. Mx starts at the start state, at move i it is in state i, writes the i-th

symbol xi of x and goes in to state i+ 1, until it reaches the accepting state. The
sequential print machines for string x have a state transition to a new state for
every symbol in x.

Observe that these machines are maximal in the sense that that are no strings
for which which automata with more states are necessary to produce them de-
terministically.

4 The Modeling Chasm

A simple counting argument proves that there are incompressible string for each
length k. There are k2 strings of length k and k2 − 1 strings of length k − 1 or
less. So there is at least one string x of length k for which there is no smaller
program available. It is generally assumed that incompressibility and random-
ness are related in the sense that incompressible string have no regularities that
can be exploited to find a shorter description [4], [12]. It is also assumed that
any incompressible string x can be produced by a simple program of the form
PRINT("x") with minimal overhead, i.e. a simple print program is the most ef-
ficient way to produce a random string. If this were the case then the following
conjecture would be true:

Conjecture 1. With high probability a sequential print machine Mx generating
a random string x is minimal in the sense that there are no Turing machines
with fewer states producing x.

A proof of this conjecture would follow from another conjecture, implied in
[9], that under Occam’s condition for the class of Turing machines with one two-
way infinite tape the density of the Halting set in the limit is 0. This can be
proved for machines with one-way infinite tape. For our case the status of this
conjecture is unclear. It is true, it has some non-trivial consequences. Amongst
other things it implies that under Occam’s condition the length of indexes of
deterministic machines that produce random strings grows with a function that
is super linear in the length of these strings:

Lemma 1. Assuming Occam’s principle and conjecture 1 there is no constant
c such that for all strings x it is the case that c|x| > |ix|, where Tix is the
deterministic machine with the shortest index ix that computes x on empty input.

Proof: This is an immediate consequence of theorem 1. According to Conjecture
1 there are for every k strings x of length k for which the most efficient machine
Mx is the sequential print machine, which is maximal and thus has k+ 1 states.
According to theorem 1 the index length for such machines grows with a factor
k log2 k and thus cannot be bounded by a linear function ck.�

Under Conjecture 1 deterministic machines are very inefficient devices for
storage of information: at least one state for each bit of information is needed.
All a deterministic computational process can do to emulate a system of messages
with maximal entropy is model each message explicitly.

The modeling chasm form the title of this paper is most apparent in the
effects of the forcing operation of definition 2. Suppose x is a random string
of length k. There is no input iy for a universal Turing machine U for which
U(iy) = x with |iy| < |x|. Under Occam’s condition, the best model available
is our first machine M1, that ’does nothing’, with a one bit code length. Given
the formula n+ 2 log n+ 1 this only adds two bits to the code length. The best
estimate is |iy| = |x| + 2 with ϕ(x) = 1 and ρ(x) = |y|. Now, enter the forcing
operation K(x) = K(x|ε), that forces us to model x in terms of a deterministic
computational process with empty input. Since x is random, under Conjecture
1, with high probability its minimal automaton is also maximal and by lemma 1
its index length is not bound by function linear in k. The chasm between ϕ(x),
the length of the model code under balanced two-part code, and K(x), the forced
one-part code complexity, is not bounded by any linear function in the limit.

The harm is even more apparent when a highly compressible string and a
random string are concatenated. Assuming Conjecture 1 there are highly com-
pressible strings that become ’incompressible’ after the forcing operation: sup-
pose x generated by U(iy) = x where i is the index of a machine that scans
the input and then adds a string of l bits of 1-s and y is a random string of
k bits. The length of this program is |iy| = c + log2 l + k where |x| = k + l,
ϕ(x) = log l + c and ρ(x) = |y|. So x is compressible if the following holds:

c+ log2 l < l (1)

Under the forcing operation j is the index of a new machine U(jε) = x that
produces x. According to the reasoning above, |j| is at least c+ log2 l+ k log2 k
bits long, so x incompressible when k + l < c+ log l + k log2 k or

k(log2 k − 1) > l − log2 l − c (2)

It is easy to find values for l and k that satisfy both equations. For these
values the corresponding string x is compressible before the forcing operation
and incompressible afterwards.

Any theory using indexes satisfying Occam’s constraint and the forcing op-
eration will under conjecture 1 in the limit be confronted with an infinite chasm
between the length of most strings and their shortest computational models. In
such a context randomness and compressibility are two very distinct notions.

If conjecture 1 is not true the results are also non-trivial. In that case the
intuition that the the most efficient way to generate random strings is the use of
the print function is not true: every random string x longer than some constant
c will have a complex program j with |x| < |j| < |i|, where i is the index of the
sequential printing machine with k log2 k < |i|. One last possibility is the other
extreme, implied by the standard interpretation of Kolmogorov complexity. i.e.
that every random string it generated by a program of comparable length.

Lemma 2. Under Occam’s principle there is no constant O(1) such that for
every string x it is the case that K(x) < |x|+O(1)

Suppose {0, 1}≤k is the set of 2k+1− 1 binary strings of length ≤ k. Suppose
each string in this set is generated by a machine with index length of at most
k bits. There 2k+1 − 1 of these machines, so at best every string has exactly
one machine. According to theorem 1 such a machine can have at most l states,
where l log2 l = k, i.e. l = k log 2

W (k log 2) , where W is the product log function. But

given the density of the Halting set a considerable part of these machines will
not stop (at least 13% in the limit by a simple argument [9]). So some strings
will by necessity be produced by an automaton with l+ 1 states, with an index
of at least (l+ 1) log2(l+ 1) = (l log2(l+ 1)) + log2(l+ 1 > k + log(l+ 1) where
log2 l = log2

k log 2
W (k log 2) is growing linearly with log2 k �.

5 Discussion

The result of this analysis is that deterministic computational models are rather
expensive. Moreover, the overwhelming majority of these models have no practi-
cal use. This insight does not affect the theory of Kolmogorov complexity itself:
random strings stay random, compressible strings stay compressible. It destroys
the intuition that computational models for random strings always have a com-
plexity ’close’ to the length of these strings. This might have consequences for all
theories that try to balance length of data sets with their possible computational
models: Kolmogorov structure function [13], facticity [1], effective complexity [6]
and forms of MDL [8]. If models for random strings can be arbitrary longer than

these strings, then it is natural to assume that compressible strings can have
useful computational models that are longer than these data sets. This contra-
dicts the intuition behind standard application of MDL and might explain why
this principle performs sub-optimally in some conditions [7]. In order to ana-
lyze this situation properly we also need to take into account enumerations of
non-deterministic Turing machines and this will be the subject of a future paper.

6 Acknowledgements

This research was partly supported by the Info-Metrics Institute of the American
University in Washington, the Commit project and the ILLC and IvI of the
University of Amsterdam.

Bibliography

[1] Adriaans , P.W. , (2009) Between Order and Chaos: The Quest for Mean-
ingful Information, Theory of Computing Systems, Volume 45 , Issue 4 (July
2009), Special Issue: Computation and Logic in the Real World; Guest Edi-
tors: S. Barry Cooper, Elvira Mayordomo and Andrea Sorbi, 650-674.

[2] L. Antunes, L. Fortnow. D. Van Melkebeek and N. V. Vinodch, (2006) Com-
putational depth: Concept and application, Theoretical Computer Science,
volume, 354.

[3] C. H. Bennett, (1988) Logical depth and physical complexity. In R. Herken,
editor, The Universal Turing Machine: A Half-Century Survey, pages 227-
257. Oxford University Press.

[4] Cover T.M. and Thomas, J.A. (2006), Elements of Information theory, Wiley.
[5] Foley, D.K. and Oliver D., Notes on facticity and effective complexity,

http://www.american.edu/cas/economics/info-metrics/pdf/upload/Oct-
2011-Workshop-Paper-Foley-and-Oliver.pdf (retrieved 19-01-2014).

[6] Gell-Mann M. and S. Lloyd (2003) Effective complexity. In Murray Gell-
Mann and Constantino Tsallis, eds.

[7] P.D. Grünwald P.D. and Langford J., Suboptimal behaviour of Bayes and
MDL in classification under misspecification, COLT 2004

[8] Grünwald, P.D. (2007), The Minimum Description Length Principle. MIT
Press.

[9] Hamkins, Joel David; Miasnikov, Alexei The halting problem is decidable on
a set of asymptotic probability one. Notre Dame J. Formal Logic 47 (2006),
no. 4, 515524.

[10] J.E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation Second Edition. Addison-
Wesley, 2001.

[11] P.M.B. Vitányi, (2006) Meaningful information, IEEE Trans. Inform. 52:10,
4617 - 4626.

[12] Li M., Vitányi P.M.B. (2008), An Introduction to Kolmogorov Complexity
and Its Applications, 3rd ed., Springer-Verlag, New York.

[13] Vereshchagin N.K., Vitányi P.M.B., Kolmogorov’s structure functions and
model selection, IEEE Trans. Information Theory, vol. 50, nr. 12, 3265–3290,
(2004)

