
A Computational Theory of Meaning

Pieter Adriaans

SNE group, IvI

University of Amsterdam,

Science Park 107

1098 XG Amsterdam,

The Netherlands.

Abstract. In this paper we develop a possible world semantics for Kol-

mogorov complexity based on frames. We define a notion of computa-

tional meaning for strings: the facticity '(x) of a string is the amount of

meaningful information it contains in a set of possible worlds. We prove

that this notion is asymptotically invariant over frames, i.e. it defines a

measure. We discuss various applications of the theory.

keywords: Meaningful information, Kolmogorov complexity, Facticity, So-
phistication, agent theory, modal logic, semantics, invariance

1 Summary

We present a computational theory of meaning that draws together elements of
Kolmogorov complexity, agent theory, modal logic and semantics. The computa-
tional theory of meaning developed in this paper can be seen as a generalization
of the invariance framework that is the basis for Kolmogorov complexity. The
main contributions of this paper are:

– Meanings are inherenty complex. Replacing nomenclature in earlier publi-
cations1 we distinguish various flavours of complexity and meaning for a
string:
• Kolmogorov complexity : the length of the shortest program that gener-

ates a string running on an empty input string.
• Sophistication: the length of the shortest program that optimally com-

presses a string on free input.

1
This paper is the culmination of a ten year long quest for a sound, workable, defini-

tion of meaningful information. In [16] facticity was tentatvily defined as the product

of the randomness deficiency and the Kolmogovorov complexity of a string. In [19]

we introduced a concept of facticity that we now prefer to call sophistication with

self-delimiting indexes defined on partial functions, which is the version of sophis-

ticationthat is analyzed in this paper. Most authors define sophistication on total

functions [23], but that does not have any fundamental consequences for the results

in the paper. The notion of Facticity we introduce here is new and based on the

complexity of sets of machines that compress string.

• Facticity : the complexity of the set of programs that compress a string
on free input.

All these measures are in fact landscapes of possible definitions. For Kol-
mogorov complexity there is an invariance proof due to Solomono↵. We
prove that sophistication is, what we call, super instable and there is no
hope for an invariance proof. The facticity measure is more resilient and a
proof of a weaker notion of invariance with reference to a finite set of univer-
sal machines is given below. Although the concept of sophistication is useful
in certain contexts, we believe that facticity is closer to our intuitions of
what meaning should be. In most cases facticity and sophistication measure
roughly the same amount of meaning in a string, except for the cases in
which sophistication shows unwanted erratic behaviour.

– A computational meaning for a string is only defined in the context of a finite

set of relevant universal Turing machines that must be specified a priori. The
current practice, motivated by Solomono↵’s invariance proof, of defining
Komogorov complexity loosely on the basis of some vague notion of small
or ’natural’ machines is misleading and insu�cient for the development of a
robust theory of computational meaning.

– We develop a theory that interprets universal Turing machines as possible

worlds in the context of a frame with an accessability relation. We introduce
the notion of the variance of a frame. This allows us to deal variations in
Kolmogorov complexity assigned to a string in sets of universal machines.

– We introduce a special class of Turing machines with naming functions. A
’name’ for a binary object is just an index by which it can be called. A nam-
ing function is always finite and it is part of the definition of the machine.
By specifiying names for binary objects we can influence their Kolmogorov
complexity and thus their probability. Turing machines with naming func-
tions allow us to specify a very general class of agent that can ’learn’ from
experience.

2 Introduction

The discovery of the theory of algorithmic- or Kolmogorov complexity was partly
motivated by Carnap’s ambition [2] to assign a proper a priori probability to an
individual statement given an infinite logical description of the world [4; 8].
Solomono↵ formulated the idea that the set of prefix-free input strings for a uni-
versal Turing machine would provide such a probability distribution [4; 8; 15].
This concept of Carnap was further developed by Kripke [3] into what we now
know as possibile world semantics. Solomono↵’s proposals, although hugely in-
fluential in computer science, never had a big impact on philosophical research.
This paper bridges part of the gap between modal logic and complexity the-
ory. It describes a computational theory of meaning in which universal Turing
machines are interpreted as descriptions of possible worlds and their associated
universal distributions. This approach clarifies some of the inherent di�culties
in the interpretation of Kolmogorov complexity, specifically the issue of the se-
lection of a universal reference machine. We defend the view that the class of

admissible reference machines should always be specified a priori since it plays
an important role in the boundary estimates of model complexities.

3 Computational Meaning

The goal of this research is to develop a general and feasible theory that allows
us to analyze the complexity of such diverse phenomena as the World Wide Web,
Biodiversity, problem solving and artistic creation. The idea that an intension
of an object could be a computation was originally formulated by Frege [1]. The
expressions ”1 + 4” and ”2 + 3” have the same extension (Bedeutung) ”5”,
but a di↵erent intension (Sinn). There are contexts in which such a distinction
is necessary. Consider the sentence ”John knows that log2 2

2 = 2”. Clearly the
fact that log2 2

2 represents a specific computation is relevant here. The sentence
”John knows that 2 = 2” seems to have a di↵erent meaning.

One mathematical object can have a variety of di↵erent meanings. The am-
bition to measure the amount of useful or meaningful information in a string
may look natural from the perspective of complexity theory, but the underlying
assumption seems to be that a meaning of an object should be a monolithic en-
tity, which is clearly at variance with the philosophical notion of meaning. Take
Frege’s famous example of the unique descriptions of the planet Venus as ’The
morning star’ and ’The evening star’. There seem to be at least three dimensions
in play:

1. The object: The planet Venus itself.
2. The name ’Venus’ that refers to this object.
3. Unique descriptions of this object like ’The morning star’.

Intuitively the planet Venus is a more meaningful object then the average peble
on the beach. One way to measure the notion of meaningfulness would be to
analyze the complexity of the set of all possible unique decriptions of Venus, but
in principle this set is infinite (e.g. consider the unique description ”The star
that was visible in London but not noticed by John on Friday the 13th at 8
o’clock.”). In this paper we control this richness by taking only in consideration
the finite set of unique descriptions that can be derived from the data set itself
(i.e. the amount of self-descriptive information in the data set):

Definition 1. The meaning of a digital object is the set of all unique descrip-

tions that are informative in the sense that they compress the original object.

The facticity of such an object is the complexity of the set of informative unique

descriptions.

Intuitively a bitmap of Picasso’s Guernica contains more meaningful infor-
mation than a bitmap of the same size of Malevich’ Black square [16]. We can
even approximate these di↵erence by measuring the information in data sets
gathered from these systems in terms of their Kolmogorov complexity. A dif-
ferent intuition tells us that a bitmap created by flipping a coin contains with
high probability no or very little meaningful information. Here entropy based

measures do not help us. They measure maximal information in random data
sets. The situation becomes more clear when we realize that a random data set,
although incompressible, has a very simple model: unbiased coin flipping. Data
sets with low entropy and data sets with high entropy contain little meaningful
information because they have small models.

3.1 One-part code compression

In Kolmogorov complexity the amount of information in an object is measured
as the length of the smallest program that produces this object on a universal
Turing machine. This is one-part code compression. The foundation of the theory
is the invariance theorem that was first formulated by Solomono↵ [4]: the shortest
code for a certain routine in a universal programming language A will only
be a constant longer than the optimal code for the same routine in any other
universal programming language B, since we can always construct a compiler of
constant length for A in B. Once we select an arbitrary universal programming
language (i.e. a universal Turing machine) as our reference tool we enter a world
of invariant measurement of the amount of information in individual data sets.

The three main weak points of this approach are 1) the fact that the measure
is uncomputable and can only be approximated and 2) the initial choice of a
universal Turing machine brings a subjective element in to the theory and 3)
the theory is asymptotic and does not work for small data sets. Recent results
show that the first point is actually not that harmful: the probability that one
chooses a bad model decays exponentially with the lack of quality of that model
[21]. The other two points are less well understood. Below we argue that they
are related to a fourth issue: the instability of model selection.

3.2 Two-part code compression

In the past decennia there have been a number of e↵orts to define the amount of
meaningful or useful information in a string in terms of two-part code compres-
sion. Here the optimal description of the data set is not a single program, but an
index of a specific Turing machine (the meaningful/useful structural part) and
an input string for this machine (the ad-hoc part) [5; 6; 10; 11; 13; 14] (See [19]
for an overview). So far these attempts have not been very successful. The main
reason is that the selection of models under this definition is not robust. Slight
changes in either the data set or the reference Turing machine can generate
uncontrollable changes in the complexity of the selected models [20; 21].

So far these observations have drawn little attention, but in fact they are
quite harmful for the application of algorithmic complexity in practice, since
they imply that the structural information that we can extract from a data set is
fundamentally unstable. It seems impossible to formulate an invariance theorem
for meaningful information along the lines of Solomono↵’s original proof (cite
1964). We can specify the amount of information in an individual data set, but we
are unable to say what the meaning of the set is: i.e. what type of generalizable
knowledge the data set contains. This is counterintuitive. Learning is nothing

but the extraction of general knowledge from individual data sets. A theory that
does not explain what we can learn has little to substantiate the claim to be a
”universal solution to the problem of induction” [8; 18].

3.3 Selecting the right universal Turing machine

The instability of models is directly related to the issue of selecting a refer-
ence Turing machine. There seems to be no consensus between the advocates
of algorithmic complexity theory about the right choice. There are roughly two
schools:

– Poor machine: choose a small universal Turing machine. If the machine is
small it is also general and universal, since there is no room to encode any bias
in to the machine. Moreover a restriction to small machines gives small over-
head when emulating one machine on the other so the version of Kolmogorov
complexity you get gives a measurement with a smaller asymptotic margin.
Hütter explicitly defends the choice of ’natural’ small machines [12; 18], but
also [15] seem to suggest the use of small models.

– Rich machine: choose a big machine that explicitly reflects what you already
know about the world. For Solomono↵, the inventor of algorithmic complex-
ity, the choice of a universal Turing machine is the choice for a universal
prior. He defends an evolutionary approach to learning in which an agent
constantly adapts the prior to what he already has discovered. The selec-
tion of your reference Turing machine uniquely characterizes your a priori
information [8].

It is our view that there is no ’right’ choice here. For rigid mathematical proofs
the poor machine approach is often best. For practical applications on finite
data sets the rich model strategy often gets much better results, since a poor
machine would have to re-invent the wheel any time it compresses a data set.
This leads to the conclusion that when using Kolmogorov complexity the class
of admissible universal models should be explicitly formulated and motivated.

4 Turing machines as possible worlds

In this paper universal Turing machines and their associated universal distribu-
tions are interpreted as (descriptions of) possible worlds. The following defini-
tions set up an appropriate framework.

4.1 Notation

– The set {0, 1}⇤ contains all finite binary strings. N denotes the natural num-
bers and we identify N and {0, 1}⇤ according to the correspondence

(0, "), (1, 0), (2, 1), (3, 00), (4, 01), . . .

Here " denotes the empty word. This equivalence allows us to apply number
theoretical predicates like ’... is prime’ to strings and complexity theoretic
predicates like ’... is compressible’ to numbers. Any data set is a number any
number is a data set.

– The length l(x) of x is the number of bits in the binary string x.
– Calligraphic capitals indicate sets: T is the set of Turing machines, U is

the set of universal Turing machines, M is a meaning, a set of codes for
Turing machines, W is a set of accessible universal machines, P is the set of
informative predicates, O is the set of optimally informative predicates.

– Lowercase letters like x, y and z will be used as variable names indicating
strings, a, b, i, j are indexes of variables, sets, machines etc. Other lowercase
letters will be used in denote functions f , p, fp, v, s, or when no confusion
is possible as names for propositions p, q, r.

– Uppercase is reserved for special objects: T is a Turing machine, U is a
universal Turing machine, P is a logical predicate.

– Computational Meta-predicates are predicates that might be true of an ob-
ject, but are uncomputable, such as Random(x), �(x), the randomness defi-
ciency of x and K(x), its Kolmogorov complexity.

4.2 Turing machines

We will follow the standard reference for Turing machines [9], with additional
new notation necessary to distinguish various ways of referring to machines.

– If x is a string than xU is the self delimiting code for this string in the format
of the universal Turing machine U . What type of self delimiting code is used
is not relevant here, apart from the fact that the length of xU is limited for
practical purposes by n+ 2 log n+ 1, where n = l(x). When no confusion is
possible we will write x for xU

– T
i

is an abstract mathematical entity, i.e. the Turing machine with index i.

– T
i

U

is a description of T
i

for U , i.e. a prefix-free program that emulates T
i

on a universal Turing machine U . T
i

U

can be processed directly on U .

– bT
i

U

is a name for the Turing machine T
i

accessible from the universal Turing

machine U , i.e. a prefix-free code that is associated with the program T
i

U

for the universal machine U . bT
i

U

can only be processed on U if it has access
to a naming function.

– A naming function n : names ! descriptions, for a universal Turing ma-

chine Un assigns a description to a name: n(bT
i

U

) = T
i

U

. Naming functions
are part of the definition of the universal machine and thus always finite.

– Un

j

is the universal Turing machine with index j and naming function n.
Turing functions with a naming function are a proper subset of the class of
universal Turing machines. At the start of the computation the prefix-free
code on the tape will be checked against the naming function. If it is defined,
the computation will run on the associated description, if not, the prefix-free
code will be interpreted as a proper program.

– U
[T

i

,T

j

,...T

k

]
j

is the universal Turing machine with index j and a specification
of the naming function as an explicit list of Turing machines [T

i

, T
j

, ...T
k

].

The sequence is meaningful: If U
[T

i

,T

j

,...T

k

]
j

then bT
i

U

< cT
j

U

< ... < cT
k

U

according to the association between strings and numbers defined above.
– T (y) = x indicates an accepting computation: the Turing machine T pro-

duces output x given input y. The same holds for U(y) = x. The computa-
tion T (x) does not necessarily have to end in an accepting state, it may be
undecidable.

– U(bTUy) = U(T
U

y) = z denotes the universal Turing machine U emulating
a Turing machine T computing z on input y. In U(bTUy) the machine is

called by its name. In U(T
U

y) it is called by its description. We’ll write
U(bTy) = U(Ty) = T (y) = z, leaving the superscript U out if no confusion
is possible.

– Universal Turing machines can emulate each other, i.e. the emulation relation
is symmetrical:

U
i

(U
j

U

i

T
U

j

y) = U
j

(U
i

U

j

T
U

i

y) = T (y) = z

The sub- and superscripts are important in this notation. If U
j

is a Java

interpreter then T
U

j

is Java code for T , if U
i

is a Prolog interpreter then

T
U

i

is Prolog code for T . The computation U
j

(U
i

U

j

T
U

j

y) erroneously tries to
run Java code on a Prolog interpreter. Emulations can be stacked indefinitly:

U1(U2
U1
U3

U2
...U

n

U

n�1
T

U

n

y) = T (y) = z

Here U
i

reads the self-delimiting code for UU

i

i+1 and starts to emulate it.

The exact details of the implementation of a naming function are unim-
portant but one could think of a finite naming table stored in the form of tu-
ples hname, descriptioni on a separate tape. One description may have various
names. Note that 1) naming functions for universal machines cannot be reflexive
or symmetrical, since that would lead to infinite regresses in the naming func-
tion: a name a for a description b containing a naming function f associating a
name a to a description b containing a naming function f etc. 2) once the naming
function is defined names can in principle be used by any other program on U
during its execution. This will, in the context of Kolmogorov complexity, happen
automatically when needed, because it searches over all possible programs. As
soon as a short name for a binary object is defined it will have consequences
for the Kolmogorov complexity of a number of binary objects. The down side
is that the naming function increases the complexity of our universal machine.
Defining naming functions is finding a balance between computational power
and descriptive complexity.

4.3 Turing frames

Universal Turing machines can emulate all other Turing machines, but it is not
clear that they always have access to the code of other machines. We define an

abstract accessibility relation that regulates this availability. This relation can
be reflexive and symmetric and thus is more abstract than the naming function
described above.

– A Turing frame F = hU
i

, Ri is a tuple where U
i

is a set of universal Turing
machines, and R : U

i

⇥U
i

an accessibility relation. The restrictions on R are
called the frame conditions.

– R : U ⇥ U is an accessibility relation between universal Turing machines.
Some possible constraints on the accessibility relation are:

• reflexive i↵ R(U
w

, U
w

), for every U
w

in U
• symmetric i↵ R(U

w

, U
u

) implies R(U
u

, U
w

), for all U
w

and U
u

in U
• transitive i↵ R(U

w

, U
u

)and R(U
u

, U
q

) together imply R(U
w

, U
q

), for all
U
w

, U
u

, U
q

in U .
• serial i↵, for each U

w

in U there is some U
u

in U such that R(U
w

, U
u

).
• Euclidean i↵, for every U

u

, U
t

, and U
w

, R(U
w

, U
u

) and R(U
w

, U
t

) implies
R(U

u

, U
t

) (note that it also implies: R(U
t

, U
u

).

This definition allows us to formulate relations between universal machines
in terms of various systems of modal logic [7]. If there are no constraints
on R, each machine just has its own database with a haphazard collection
of accessible systems. The associated modal logic is K. If each machine has
access to a database with the same set of machines, then R is an equivalence
relation. The associated modal system is S5.

– A Transparent- or S5 Turing frame is associated with S5 Modal logic, i.e.
the accessibility relation is reflexive, symmetric and transitive.

– W
U,F = {U

i

|R(U,U
i

)} is the set of universal machines accessible from U
according to R specified in F .

– A model is a 3-tuple M = hU
i

, R, vi.
– Here v is a valuation function. We recursively define the truth of a formula

relative to a set of universal Turing machines U
i

and an accessibility relation
R:
• if v(U

w

, p) then U
w

|= p
• U

w

|= ¬p if and only if U
w

6|= p
• U

w

|= (p ^ q) if and only if U
w

|= p and U
w

|= q
• U

w

|= ⇤p if and only if for every element U
u

of U , if R(U
w

, U
u

) then
U
u

|= p
• U

w

|= ⌃p if and only if for some element U
u

of U , it holds that R(U
w

, U
u

)
and U

u

|= p
• |= p if and only if U |= p, where U is the reference universal machine.

4.4 Computational Predicates associated with Turing machines

Computational predicates allow us to reason about true statements associated
with computations:

– P (x) is a proposition that can be true or false, it denotes the predicate P
applied to variable x: x is P .

– Any Turing machine T
i

has an associated predicate P
i

with the same index
with the following semantics:

8(x 2 {0, 1}⇤)8(U
y

2 U)(v(U
y

, P
i

(x)) , 9(k)T
i

(k) = x)

Here v is the valuation function, P
i

(x) is a proposition.
– The extension of P

i

is {x|9(k)T
i

(k) = x}, where k is an index of x in this
set.

In the following we will refer to Turing machines as Turing predicates if we
are predominantly interested in the qualities of an object they compute. This
construction allows us to formulate true propositions that are associated with
computations, e.g. if T

i

is a machine that generates Fibonacci numbers, we can
say that P

i

(x) is true i.e. x is a Fibonacci number, if there is some index k such
that T

i

(k) = x.
Note that 1) in general the extension of such a predicate P

j

is uncomputable,
2) this undecidability by itself has no consequences for proof theoretical results of
the modal systems as long as we assume that the valuation function v is defined
(as is the case in the theory of Kolmogorov complexity introduced below) 3) this
definition generalizes over the set of all possible universal Turing machines and
4) the restriction to one place predicates operating on strings does not reduce the
expressiveness. Any n-place predicate can be implemented via a Turing machine
that separates its input-string into n parts via whatever technique we can think
of (self-delimiting code, enumeration of sets, etc). Since we only discuss math-
ematical statements that are true in all worlds the valuation function v will be
the same for all models. We can abstract from individual models M = hU

i

, R, vi
and concentrate on the associated Turing frame F = hU

i

, Ri.

5 Kolmogorov complexity

We follow the standard reference for Kolmogorov complexity [15]. When we
select a reference universal Turing machine U from U we can define the prefix-
free Kolmogorov complexity K(x) of an element x 2 {0, 1}⇤ the length l(p) of
the smallest program p that produces x on U . We first define the conditional
complexity:

Definition 2. K
U

(x|y) = min
i

{l(i) : U(iy) = x}

The actual Kolmogorov complexity of a string is defined as the one-part code:

Definition 3. K(x) = K(x|")

Here all the compressed information, model as well as noise, is forced on to the
model part.

Definition 4. The randomness deficiency of a string x is �(x) = l(x)�K(x)

For two universal Turing machines U
i

and U
j

, satisfying the invariance theo-
rem, the complexities assigned to a string x will never di↵er more than a constant:

|K
U

i

(x)�K
U

j

(x)| c
U

i

U

j

(1)

The invariance theorem also holds for the randomness deficiency of a string:

Lemma 1. |�
U

i

(x)� �
U

j

(x)| c
U

i

U

j

Proof: |�
U

i

(x) � �
U

j

(x)| = |(l(x) � K
U

i

(x)) � (l(x) � K
U

j

(x))| = |K
U

i

(x)) �
K

U

j

(x))| c
U

i

U

j

⇤
A string is Kolmogorov random with reference to a universal Turing ma-

chine if there is no program that compresses it. Using randomness deficiency the
definition is:

Definition 5 (Kolmogorov randomness).
Random

U

(x) i↵ �
U

(x) c
r

Usually the constant c
r

is taken to be 0 in this definition. Note that Random(...)
is a meta-predicate.

A choice for a universal reference Turing machine U generates a specific so-
called ’universal distribution’ m

U

over the set of strings:

logm
U

(x) = K
U

(x) +O(1) (2)

Note that we can reduce the Kolmogorov complexity of any string x to one

bit by means of the naming function: just define T
i

(") = x and bT
i

U

= ”1”, then
U(1") = x. This shows that the naming function influences the Kolmogorov
complexity of objects and the corresponding universal distribution. In general
we will have l(bT

i

) << l(T
i

). A learning agent can on the basis of his experience
update his probability distribution over the world by specifying short names for
long strings that occur frequently.

Because of the asymptotic nature of Kolmogorov complexity, small objects
will almost always be random, simply because there is not enough room to
compress them. A useful concept in this context is the notion of a randomness
threshold:

Definition 6. A Turing machine T
i

is monotone if 8(k 2 N)T
i

(k + 1) � T
i

(k).
The randomness threshold of a monotonically increasing machine T

i

with ref-

erence to a universal Turing machine U is the smallest value of k such that

U(T
i

k) = x and l(T
i

k) < l(x).

5.1 Variance of Turing Frames

In the following paragraphs we will only consider S5 Turing frames. The variance
of a Turing frame is the largest distance between the Kolmogorov complexity
assigned to strings by di↵erent universal Turing machines in the frame:

Definition 7 (Variance of a frame). The variance of a frame F = hU
i

, Ri is

V ar(F) = min c
U

x

U

y

(8(U
x

, U
y

2 U
i

)8(z 2 {0, 1}⇤)|K
U

x

(z)�K
U

y

(z)| c
U

x

U

y

)

There are frames with unbounded variance. Any infinite S5 Turing frame has
unbounded variance:

Lemma 2. If U is a countably infinite set of Turing machines and F = hU , Ri
is an S5 Turing frame , i.e. a frame defined on R that is symmetric, reflexive

and transitive then V ar(F) is unbounded.

Proof: Suppose that V ar(F) = c. Select a fixed universal machine U
i

. For any
other universal machine U

j

we have:

U
i

(U
j

U

i

T
U

j;) = U
j

(U
i

U

j

T
U

i;) = T (;) = x

Since the length of the indexes for an infinite class of objects cannot be
bounded and R is S5 there will be an infinite number of universal machines U

j

with index U
j

U

i

such that:

l(U
j

U

i

T
U

j

) > l(U
j

U

i

) > l(U
i

U

j

T
U

i

) + c

Which gives:

|l(U
j

U

i

T
U

j

)� l(U
i

U

j

T
U

i

)| > c

and
|K

U

i

(x|;)�K
U

j

(x|;)| = |K
U

i

(x)�K
U

j

(x)| > c

So V ar(F) > c. ⇤
In such a frame the notions of Kolmogorov complexity and randomness defi-

ciency are de facto undefined. We can always select a machine that compresses
a string, or makes a random string compressible. The smaller the variation, the
more exact our measures will be. By Solmono↵’s invariance theorem the varia-
tion is limited by the size of the Turing machines in the frames, so this is a more
formal variant of the class of ’natural’ machines proposed by Hütter [12; 18].
To show how the choice of a universal Turing machine a↵ects the notions of
randomness, compressibility and variance we give an elaborate example.

Example 1. Suppose we have a simple universal Turing machine Un with a nam-
ing function n. U [], with an empty list is the machine U with an empty naming
table, Umax is U with a large naming table that contains all known mathemat-
ical functions. U [T

fp

] is the version of U that only has a name for the machine
T
fp

that generates Fibonacci primes. Consider the set of Fibonacci primes: Fi-
bonacci numbers that are also prime. FB(i) denotes the i-th Fibonacci prime.
It is not known whether this set is finite or not 2. When we want to study this
set with algorithmic complexity theory the choice of a universal machine is not
neutral:
2
At september 2015 the largest known certain Fibonacci prime was F81839, with

17103 digits. See: https://en.wikipedia.org/wiki/Fibonacci prime, retrieved october

9 2015.

– In the world U [] a possibly infinite number of Fibonacci primes will be
compressible, but there will be quite a large intitial segment of smaller Fi-
bonacci primes that is still regarded as random (e.g. for sure the elements
of the set: {2, 3, 5, 13, 89, 233, 1597}) . Since U [] is minimal the code for Fi-
bonacci primes has to be stored explicitely in the program T

fp

that recog-
nizes Fibonacci primes, so an example like FP (11) = 2971215073 will be
regarded as incompressible since for U(T

fp

11) = 2971215073 we will have
l(T

fp

11) > l(2971215073).
– When we shift to U [T

fp

] the concept of Fibonacci primes can be called as a
name dT

fp

and thus smaller examples up to an initial segment will be com-

pressible, e.g U [T
fp

](dT
fp

11) = 2971215073 and l(dT
fp

11) < l(2971215073).
– When we study invariance between U [] and U [T

fp

] this advantage will vanish
because of the length of the extra codes in the expression U [T

fp

](U [] T
fp

11) =

U [] (U [T
fp

] dT
fp

11) = 2971215073. The Kolmogorov complexity measured

with U [T
fp

] in this frame gets a penalty of at least l(U []) and 2971215073
again is a random number.

– If we select Umax as our reference machine, not much will change with re-
garding to the set of Fibonacci primes that is compressible. However the vari-
ance between U [T

fp

] and Umax will be big because of the length of the code

for Umax in the expression Umax(U [T
fp

] dT
fp

11) = U [T
fp

](Umax dT
fp

11) =
2971215073. The Kolmogorov complexity measured with U [T

fp

] in this frame
gets a penalty of l(Umax). If the set of Fibonacci primes is indeed finite and
l(Umax) is big, it might be the case that the whole set is not ’visible’ any
more from the perspective of U [T

fp

].

Since we do not know wether the set of Fibonacci primes is infinite there
might be choices of universal Turing machines for which the set of numbers that
can be adequately modelled as Fibonacci primes is empty. A rich world with
more information is certainly not always better then a poor world. In a world
in wich we are only interested in Fibonacci primes U [T

fp

] is a better choice than
Umax or U []. in the frame F = h{U [T

fp

], Umax}, Ri there might be no strings
that are compressed by T

fb

due to the large variance.

6 Meaningful Information

If we combine Shannon’s notion of an optimal code with Bayes’ law, we get a
rough theory about optimal model selection. Let H be a set of hypotheses and
let x be a data set. Using Bayes’ law, the optimal computational model under
this distribution would be:

M
map

(x) = argmax
M2H

P (M)P (x|M)

P (x)
(3)

This is equivalent to optimizing:

argmin
M2H � logP (M)� logP (x|M) (4)

Here � logP (M) can be interpreted as the length of the optimal model code in
Shannon’s sense and � logP (x|M) as the length of the optimal data-to-model

code; i.e. the data interpreted with help of the model.
This derivation is quite misleading in so far as it suggests that the best model

is always one piece of code or one computational predicate. Take the example
of Fibonacci primes. These are primes that are both Fibonacci numbers and
prime. They are in some contexts better described by the complex description
Fibonacci(x)^Prime(x) then by some predicate FibonacciPrime(x). So in the
following we will be more interested in sets of predicates describing objects than
in defining a single descriptive predicate.

6.1 Informative Predicates

We investigate various sets of predicates relevant to the notion of meaning. The
set of informative predicates relative to a world U

p

is and a threshold function
f : T ⇥ U ! N :

Definition 8 (Turing predicates informative relative to a world).

P
U

p

(x) = {T
i

|9(k)(U
p

(T
i

k) = x ^ l(T
i

k) < l(x)))}

The amount of information the associated predicate P
i

of a Turing machine
T
i

carries about an object x relative to U
p

is:

Definition 9 (Amount of information in a Predicate).

I
U

p

(T
i

, x) =

(
(l(T

i

U

p

) if 9(k)(U
p

(T
i

k) = x ^ l(T
i

k) < l(x))
0 otherwise.

i.e. the length of the index for T
i

on U
p

if it compresses x and 0 otherwise.

This notion of informativeness is instable. There are cases in which we can
make a string x compressible by a predicate T

i

simply by defining a short name
bT
i

for it:

Lemma 3 (Instability of Informativeness). There are combinations of strings

x, Turing machines T
i

, and universal Turing machines U
m

and U
n

such that

I
U

m

(T
i

, x) = 0 and I
U

n

(T
i

, x) > 0.

Proof: Choose T
i

and x so that 9(k)(U
m

(T
i

k) = x) ^ (k << l(x)) and
I
U

m

(T
i

, x) = 0, i.e. x is not compressible for U
m

due to the length of T
i

. De-
fine U

n

= Us

m

, a machine that is equal to U
m

except for the naming function
s(bT

i

) = T
i

, where bT
i

<< T
i

so that Us

m

(bT
i

k) = x and l(k) + l(bT
i

) < l(x). ⇤
The optimally informative predicates are a subset of the informative sets.

Definition 10 (Optimally informative Turing predicates relative to a
world).

O
U

p

(x) = {T
i

|9(k)(U
p

(T
i

k) = x ^ l(T
i

k) < l(x))^
¬(9(T

j

,m)}(U
p

(T
j

m) = x ^ (T
i

k) > (T
j

m))}

The first condition 9(k)(U
p

(T
i

k) = x ^ l(T
i

k) < l(x)) ensures that T
i

2
P
U

p

(x). The optimally informative predicates are a subset of the informative

sets. The second condition ¬(9(T
j

,m)(U
p

(T
j

m) = x ^ (T
i

k) > (T
j

m))) ensures
that T

i

gives maximal compression of x. This makes O
U

p

(x) super instable, on
top of the instability of P

U

p

(x):

Lemma 4 (Super Instability of Optimal Informativeness). There are

combinations of strings x, Turing machines T
i

, and universal Turing machines

U
m

and U
n

such that O
U

n

(x) = {T
i

}, what ever the content of O
U

m

(x).

Sketch of Proof: Along the lines of the proof of lemma 3. As soon as we shift
from U

m

to a new world U
n

= Us

m

that is similar except for the fact that we
have a a naming function s(bT

i

) = T
i

, that compresses the string x one bit better
than the ones in the current set O

U

m

of optimally informative predicates, the
whole set is replaced by O

U

n

= {T
i

}. ⇤
Super instability in this case implies that a small change in the definition of

our universal machine makes the whole set of optimally informative predicates
collapse on to one new predicate. For the set of informative predicates only
individual predicates jump out of the set so they are more resilient.

6.2 Sophistication

This explains why we can never formulate an invariance proof for the notion of
sophistication over a general set of acessible worlds. There have been attempts to
define a two-part variant of Kolmogorov complexity as min

ij

{l(ij) : U(iy) = x}
or as:

Definition 11. K2
U

(x) = min
i,j

{l(i) + l(j) : U(ij) = x}

It is easy to prove that K is an upper bound for K2 which is more expressive:

Lemma 5. 8(x)K
U

(x) � K2
U

(x)

Proof: If there exists for K a one part code U(k) = x that is more e�cient
than the optimal two-part code ij, then k would be chosen for K2 as two-part
program with empty input: U(k") = x. ⇤

The underlying idea of two-part code optimization is that i allows us to
separate the concatenation ij into its constituent parts, i and j. Here i is the
index of a Turing machine which can be seen as capturing the regular part
of the string x, and j describes the input for the machine, i.e. the irregular

part, e.g. errors in the model, noise and other missing information. In its turn j
could be seen as an index of x in the set of objects that is defined by accepting
computations of i. This is the motivation behind the definition of the notion of
the sophistication of a string.

Definition 12 (Sophistication). S
U

p

(x) = min
i

{l(i) : i 2 O
U

p

(x)}

Where O
U

p

(x) is the set of optimally informative predicates. According to
lemma 4 this set is extremely sensitive to shifts of universal Turing machines, on
top of the variance of the super set P

U

p

(x) ◆ O
U

p

(x) due to lemma 3. Change a
couple of bits in your reference machine and the whole set vanishes. The notion
of sophistication under two-part code compression is less useful when we want
to te able to vary our reference models.

6.3 Computational Meaning and Facticity

There have been many attempts to define the meaning of a string in terms of
the most informative predicate, the one which generates the highest compres-
sion, but according to lemma 4 it is impossible to proof any form of invariance
for this notion. The analysis above also shows that meta-predicates like ”... is
random”, ”... is informative” and ”... is compressible” are contingent. For any
string given a set of universal machines there might be predicates that are nec-
cessarily informative in all worlds, possibly informative only in some worlds or
neccessarily uniformative in all worlds. Moreover lemma 2 tells us that we have
to select an a prioiri finite set of reference machines in a frame, even if we want
to define classical Kolmogorov complexity. So we might just as well make this
assumption explixit and definine the meaning of a string as a set of predicates
that are necessarily informative in a finite set of accessible worlds. A predicate
P
i

is intrinsic for a string x if it compresses x in all accessible worlds:

Definition 13 (Computational meaning of string relative to a world).

M
U,F (x) = {T

i

U |8(U
y

2 W
U,F)(IU

y

(T
i

U

y

, x) > 0)}

The meaning of a string is the set of codes for the Turing machines associated

with the intrinsic predicates. Note that the indexes T
i

U

of the machines in the
meaning set are in the format of the reference machine U , while the indexes used

in the measurement T
i

U

y

use the format of the specific machine. The facticity
of a string is the amount of meaningful information in x, relative to a specific
world and a frame is simply the Kolmogorov complexity of its meaning:

Definition 14 (facticity).

'
U,F (x) = K

U

(M
U,F (x))

We have:

Theorem 1 (Invariance of Facticity). For any string x we have

'
U

a

,F
a

(x) = '
U

b

,F
b

(x) +O(1)

Proof: The set accessible worlds for U
a

and U
b

are: W
U

a

,F
a

and W
U

b

,F
b

By definition 13 we have for the meaning of a string x in these worlds:

M
U

a

,F
a

(x) = {T
i

U

a |8(U
y

2 W
U

a

,F
a

)(I
U

y

(T
i

U

y

, x) > 0)}

M
U

b

,F
b

(x) = {T
i

U

b |8(U
y

2 W
U

b

,F
b

)(I
U

y

(T
i

U

y

, x) > 0)}

Note that these definitions only di↵er on two points: 1) U
a

versus U
b

and 2)
W

U

a

,F
a

versusW
U

b

,F
b

. These are mathematical objects for which the conditional
complexity is defined. This gives: K(M

U

a

,F
a

(x)) =

K(M
U

b

,F
b

(x)) +O(K(U
b

|U
a

)) +O(K(F
b

|F
a

)) = K(M
U

b

,F
b

(x)) +O(1)

HereO(K(U
b

|U
a

)) is the conditional complexity of the world shift andO(K(F
b

|F
a

))
is the conditional complexity of the frame shift. They are both constant for dif-
ferent x. By definition 14 we have '

U

a

,F
a

(x) = '
U

b

,F
b

(x) +O(1). ⇤

Lemma 6. In an transparant S5 Turing frame F = hU
i

, Ri where R is an

equivalence relation (symmetric, reflexive, transitive) we have for all strings x
and for all U

a

, U
b

2 U
i

'
U

a

,F (x) = '
U

b

,F (x) + V ar(F)

Proof: According to the result in theorem 1 we have:

'
U

a

,F
a

(x) = '
U

b

,F
b

(x) +O(K(U
b

|U
a

)) +O(K(F
b

|F
a

))

The frame F is fixed. We are only left with variance between accessible worlds
O(K(W

U

b

,F |WU

a

,F)):

'
U

b

,F (x) +O(K(U
b

|U
a

)) +O(K(W
U

b

,F |WU

a

,F)

Since F is S5 the set of accessible worlds is the same for every world in this
frame:

'
U

b

,F
b

(x) +O(K(U
b

|U
a

))

Which by definition 7 gives:

'
U

a

,F (z) = '
U

b

,F (x) + V ar(F)

⇤
What theorem 1 tells us is that the less you specify about your discourse,

the more vague the notion of meaning becomes. If we specify nothing about the
relation R, the corresponding frame is associated with modal system K. In such
a frame the notion of meaning is very unstable, because any shift to a new world
can generate a new set of accessible worlds. In principle one could investigate
the notion of meaning in the whole landscape of modal logics in this way, but
that is not the goal of the present study.

Lemma 6 tells us why it is misleading to concentrate on small machines when
defining Kolmogorov complexity. In principle a frame with small machines can
still have a variance of the size of the biggest machine, on the other hand we could
define a frame rich with information about our domain with low variance: for
most induction problems a rich frame with low variance seems a better option.

7 Discussion

Although the underlying proofs are quite involved we end up with a simple com-
putational theory: The computational meaning of a string x relative to a frame
is the set of Turing machines associated with intrinsic computational predicates
of that string. The amount of meaning measured in bits is its facticity '(x), the
Kolmogorov complexity of this set. We have to check that this definition satisfies
our intuitions. Some observations:

– For each finite dataset there is only a finite number of predicates that are
informative. This is clear from the following observation: suppose that there
are an infinite number of informative predicates. In that case there is an
infinite number of associated Turing machines with an index longer than x,
but to be informative a machine should have at least an index shorter than
x. Note that many of the predicates in the meaning set will be redundant. If
a Fibonacci number is prime it is necessarily also a Fibonacci prime. We can
estimate the Kolmogorov complexity of the meaning of a string on the basis
of a partial description of the meaning, leaving out redundant predicates.

– For each finite dataset there is an infinite number of predicates that are
true, but not informative: for any natural number n there is a Turing ma-
chine which checks whether x is smaller than n. The associated predicates
of these Turing machines represent true facts about x but they cannot all
be informative.

– Random strings have no meaning, i.e. the set of meaningful predicates is
empty. There are no informative predicates. This coincides with our intuition
that high entropy sets contain no useful information.

– No string contains more meaning than information: '
U,F (x) K

U,F (x).
This is clear from the fact that K(x) is the amount of bits we need to
produce x, which given U and F defines '

U,F (x). This coincides with our
intuition that simple strings have little meaning.

All informative predicates In [21] other requirements for a theory of com-
putational theory of meaning are mentioned. We check the theory of facticity
against these requirements:

– Facticity should count the bits required for an e↵ective description of the
structural properties of a binary string: the notion of meaning as the Kol-
mogorov complexity of the set of intrinsic predicates satisfies this require-
ment.

– An analogue of invariance should hold: there must be strict limits on how
much '(x) can be a↵ected by a change in programming language. We have
studied this problem in depth and we have defined an invariance proof.

– Facticity should not be bounded by a constant: this issue is technical [19; 23].
Theories that select the shortest model as meaning, will, for very large data
sets, always select a small universal Turing machine as their basic model.
This problem is evaded in our theory by working with sets of informative

predicates. Such small universal machines will possibly occur in our set of
informative predicates together with all other informative predicates, but
they will not limit the facticity of a string.

– Similarly, there should be no constant c such that K(x)�'(x) c for all x,
because then facticity would be equivalent to Kolmogorov complexity. This
is clear from the fact that random strings have low facticity.

7.1 Unique descriptions

The interaction between meanings can be as complex as anything that human
cognition can concieve or anything that is expressible in finite mathematics.
Yet the are ways to tame this complexity. As an example take the number
2971215073, that is rather special. Here are some unique decriptions:

1. The 143130479th prime number
2. The 47th Fibonacci number, where 47 is the 15th prime number.
3. The 11th Fibonacci prime.
4. The largest known Fibonacci prime without any pair of consecutive equal

digits.
5. The number that John uses as code for his safe.

The first three predicates could be intrinsic in some appropriate world. The
last two are ad hoc.

Let T
p

, T
f

and T
fp

be Turing machines that respectively generate primes,
Fibonacci numbers and Fibonacci primes.

2971215073 = T
fp

(11) = T
f

(47) = T
f

(T
p

(15)) = T
p

(143130479)

Chains of compressing programs

T1(T2(...Ti

(T
j

(...T
n�1(Tn

(k))...))...)) = x

T1(T2(...Tn�1(Tn

(k))...)) = x

l(T1) + l(T1) + ...+ l(T
n

) + l(k) < x

8 Further research and applications

The computational meaning of a string is a complex set of predicates, each of
which compresses the string to some extent in all accessible worlds. The restric-
tion to finite sets of accessible worlds may seem too severe, but according to
lemma 2, it is a necessary restriction for a workable definition of Kolmogorov
complexity itself. So there is no loss of generality. This definition is more robust
than sophistication that selects one optimally compressing program as the mean-
ing of a string. Since facticity is itself measured as the Kolmogorov complexity

of the set of informative predicates, in the end it is compressed to one program
generating the set. This will most cases be close to the meaning measured by
factivity, modulo the erratic jumps that sophistication can make in borderline
cases where one predicate subsumes another. In the case of facticity both predi-
cates will be in the meaning set, so such a jump in sophisitcation will not a↵ect
facticity.

Another big advantage of the theory of facticity is the fact that it allows an
agent to discover the meaning of a string incrementally, by identifying predi-
cates that compress the set partially. This allows for incremental discovery of
meaning and solves many of the problems described in [17]. Meaning is essen-
tially composite: e.g. the number 2971215073 is meaningful, because it is prime
and it is a Fibonacci number. The two di↵erent predicates are in most contexts
more informative than a single one. Especially because we can discover the fact
that it is prime independent of the fact that it is a Fibonacci number. Another
example: The Mona Lisa is a rich work of art because we can see many di↵er-
ent meanings in it, not because it represents some monolithic Platonic idea of
’Mona-Lisa-ness’.

We specify various application paradigms of the theory.

– A learning agent, that tries to detect the meaning of a string by searching for
predicates that compress the string. As soon as it discovers such a predicate
it has to do two things: 1) Check whether the predicate is intrinsic and, 2)
check whether is in not subsumed by predicates it already knows. If the agent
is confronted with a sequence of data sets it might hone its expectation by
formulating names for string that occur frequently.

– A creative agent tries to maximize the meaning in a data set. Such a factic

process is by nature unstable. A creative agent manipulates data sets in such
a way that the facticity increases, i.e. it will be compressed by an increasingly
rich set of predicates that are mutually independent. Such a process will be
subject to sudden phase transitions where the set collapses in to randomness.

– Mixed groups of these agents can be defined to model various social, eco-
nomical and other processes (Pupil-teacher, Artists-public). A mixed group
of creative and learning agents can develop what one could call a ’culture’: a
set of expectations about (i.e. names for) the artefacts that agents produce.
For agents that do not share this culture a lot of artefacts will seem random,
because they do not have access to the naming functions that compress them.
item In this context notions as ethics, esthetics, trust and theory of other
minds can be studied. For a group of agents living in a certain environment
the accessibility relation will not be reflexive, symmetrical or transitive: i,e,
they can observe the behaviour of themselves and others but they do not
have access to the code to emulate themselves or others.

The learning agent and the creative agent represent variantions of the fac-
ticity concept along two orthogonal axes: variation of the agent and variation
of the data. By formulating invariance conditions over classes of machines we
are left with a stable platform to study phase transitions over data sets. The
concept of facticity does not allow a data set to shift to randomness as a result

of selecting a new universal machine. Yet such abrupt phaseshifts to randomness
can occur also in the context of facticity when varying the data. Two other con-
cepts of meaningful information may be helpful in this context: selfdissimilarity
[11] and Local Entropy Variation (LEV) [22]. Both approaches reflect the idea
that adding more meaning to a data set increases the internal ’tension’ between
space needed to encode traces of predicates that compress the data set and the
global variation of internal di↵erences in the data set. There will be classes of
data sets that reflect these sudden phase transitions. In a future publication we
intend to study these phenomena in depth.

9 Acknowledgements

I thank Steven de Rooij, Peter Bloem, Frank van Harmelen, Amos Golan, Erik
Schultes, Peter van Emde Boas and my fellows at the Info-metrics Institute for
many inspiring discussions. I thank the University of Amsterdam and especially
Cees de Laat for allowing me the leeway to pursue my research interests. This
research was partly supported by the Info-Metrics Institute of the American
University in Washington, the Commit project of the Dutch science foundation
NWO, the Netherlands eScience center, the IvI of the University of Amsterdam
and a Templeton Foundations Science and Significance of Complexity Grant
supporting The Atlas of Complexity Project.

Bibliography

[1] Gottlob Frege. Begri↵sschrift: eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. Halle, 1879.

[2] Rudolf Carnap. The two concepts of probability: The problem of probability.
Philosophy and Phenomenological Research, 5 (4): 513–532, 1945.

[3] Saul Kripke, 1963. ”Semantical Considerations on Modal Logic”, Acta Philo-
sophica Fennica 16:8394

[4] Ray. J. Solomono↵. A formal theory of inductive inference: Parts 1 and 2.
Information and Control, 7:1–22 and 224–254, 1964.

[5] M. Koppel, (1987) Complexity, Depth, and Sophistication”, in Complex Sys-
tems 1, pages = 1087-1091.

[6] M. Koppel (1995) Structure, The universal Turing machine (2nd ed.): a half-
century survey. pages 403-419. Springer Verlag.

[7] Hughes, G. E., and Cresswell, M. J. A New Introduction to Modal Logic.
Routledge, 1996.

[8] Ray R. Solomono↵, ”The Discovery of Algorithmic Probability”, Journal of
Computer and System Sciences, Vol. 55, No. 1, pp. 73-88, August 1997.

[9] Hopcroft, J. E., Motwani, R., Ullman, J. D., Introduction to Automata The-
ory, Languages, and Computation Second Edition. Addison-Wesley, 2001.

[10] M. Gell-Mann and S. Lloyd (2003) E↵ective complexity. In Murray Gell-
Mann and Constantino Tsallis, eds. Nonextensive entropy–Interdisciplinary

applications, Oxford University Press, 387-398.

[11] J. W. McAllister, (2003) E↵ective Complexity as a Measure of Information
Content, Philosophy of Science, Vol. 70, No. 2, pp. 302-307.

[12] Marcus Hütter, Universal Artificial Intelligence: Sequential decisions based
on algorithmic probability. Berlin: Springer, 2005.

[13] P.M.B. Vitányi, (2006) Meaningful information, IEEE Trans. Inform. 52:10,
4617 - 4626.

[14] D.H. Wolpert and W. Macready (2007) Using self-dissimilarity to quantify
complexity: Research Articles, Complexity, volume 12,number 3, pages 77–
85.

[15] Li M., Vitányi P.M.B. (2008), An Introduction to Kolmogorov Complexity
and Its Applications, 3rd ed., Springer-Verlag, New York.

[16] P.W. Adriaans , Between Order and Chaos: The Quest for Meaningful In-
formation, Theory of Computing Systems, Volume 45 , Issue 4 (July 2009),
Special Issue: Computation and Logic in the Real World; Guest Editors: S.
Barry Cooper, Elvira Mayordomo and Andrea Sorbi Pages 650-674, 2009.

[17] P. W. Adriaans and P. M. B. Vitányi, (2009) Approximation of the Two-
Part MDL Code, Comput. Sci. Dept., Univ. of Amsterdam, Amsterdam;
Information Theory, IEEE Transactions on, Volume: 55, Issue: 1, On page(s):
444-457.

[18] Samuel Rathmanner and Marcus Hütter, A Philosophical Treatise of Uni-
versal Induction, Entropy 2011, 13(6), 1076-1136.

[19] P..W. Adriaans, Facticity as the amount of self-descriptive information in
a data set, arXiv:1203.2245 [cs.IT], 2012.

[20] Lúıs Antunes, Andre Souto, and Andreia Teixeira. 2012. Robustness of log-
ical depth. In Proceedings of the 8th Turing Centenary conference on Com-
putability in Europe: how the world computes (CiE’12), S. Barry Cooper,
Anuj Dawar, and Benedikt Lwe (Eds.). Springer-Verlag, Berlin, Heidelberg,
29-34.

[21] Peter Bloem, Francisco Mota, Steven de Rooij, Luis Antunes, Pieter Adri-
aans: A Safe Approximation for Kolmogorov Complexity. ALT 2014: 336-350.

[22] Personal communication by Erik Schultes.
[23] Peter Bloem, Steven de Rooij, Pieter Adriaans: Two Problems for Sophis-

tication. ALT 2015: 379-394.

