
Computation, information and the arrow of time

Pieter Adriaans1,2 and Peter van Emde Boas3,4

1 Adriaans ADZA Beheer B.V.
2 FNWI

University of Amsterdam,
Science Park 107

1098 XG Amsterdam,
The Netherlands.

3 Bronstee.com B.V., Heemstede
4 ILLC, FNWI, University of Amsterdam

Postbus 94242,
1090 GE Amsterdam

pieter@pieter-adriaans.com; peter@bronstee.com

Abstract. In this paper we investigate the relation between information
and computation under time symmetry. We show that there is a class
of non-deterministic automata, the quasi-reversible automata (QRTM),
that is the class of classical deterministic Turing machines operating in
negative time, and that computes all the languages in NP. The class
QRTM is isomorphic to the class of standard deterministic Turing ma-
chines TM, in the sense that for every M ∈ TM there is a M−1 in QRTM
such that each computation on M is mirrored by a computation on M−1

with the arrow of time reversed. This suggests that non-deterministic
computing might be more aptly described as deterministic computing in
negative time. If Mi is deterministic then M−1

i is non deterministic. If
M is information discarding then M−1 ’creates’ information. The two
fundamental complexities involved in a deterministic computation are
Program Complexity and Program Counter Complexity. Programs can
be classified in terms of their ’information signature’ with pure counting
programs and pure information discarding programs as two ends of the
spectrum. The paper provides a formal basis for a further analysis of such
diverse domains as learning, creative processes, growth and the study of
the interaction between computational processes and thermodynamics.

1 Introduction

The motivation behind this research is expressed in a childhood memory of one
of the authors: ”When I was a toddler my father was an enthusiastic 8-mm
movie amateur. The events captured in these movies belong to my most vivid
memories. One of the things that fascinated me utterly was the fact that you
could reverse the time. In my favorite movie I was eating a plate of French fries.
When played forward one saw the fries vanish in my mouth one by one, but
when played backward a miracle happened. Like a magician pulling a rabbit out

of a hat I was pulling undamaged fries out of my mouth. The destruction of fries
in positive time was associated with the creation of fries in negative time.”

This is a nice example of the kind of models we have been discussing when
we were working on the research for this paper. It deals with computation and
the growth and destruction of information. Deterministic computation seems to
be incapable of creating new information. In fact most recursive functions are
non-reversible. They discard information. If one makes a calculation like a+b = c
then the input contains roughly (log a + log b) bits of information whereas the
answer contains log(a + b) bits which is in general much less. Somewhere in the
process of transforming the input to the output we have lost bits. The amount
of information we have lost is exactly the information needed to separate c in to
a and b. There are many ways to select two numbers a and b that add up to c.
So there are many inputs that could create the output. The information about
the exact history of the computation is discarded by the algorithm. This leaves
us with an interesting question: if there is so much information in the world and
computation does not generate information, then, where does the information
come from?

Things get more fascinating if we consider the Turing machine version of the
French fries example above. Suppose we make a Turing machine that only erases
its input and we make a movie of its execution and play it backwards. What
would we see? We see a machine creating information out of nothing, just the
same way the toddler in the reversed movie was pulling neat French fries out of
his mouth. So also in this case, if we reverse the arrow of time, destruction of
information becomes creation and vice versa. In previous papers the first author
has investigated the relation between learning and data compression ([4; 2]).
Here we are interested in the converse problem: how do data-sets from which we
can learn something emerge in the world? What processes grow information?

There is a class of deterministic processes that discard or destroy information.
Examples are: simple erasure of bits, (lossy) data compression and learning.
There is another class of processes that seem to create information: coin-flipping,
growth, evolution. In general, stochastic processes create information, exactly
because we are uncertain of their future, and deterministic processes discard
information, precisely because the future of the process is known. The basic
paradigm of a stochastic information generating process is coin flipping. If we
flip a coin in such a way that the probability of head is equal to the probability
of tails, and we note the results as a binary string, then with high probability
this string is random and incompressible. The string will then have maximal
Kolmogorov complexity, i.e. a program that generates the string on a computer
will be at least as long as the string itself ([8]). On the other hand if we generate
a string by means of a simple deterministic program (say ”For x = 1 to k
print("1")”) then the string is highly compressible and by definition has a low
Kolmogorov complexity which approximates log k for large enough k. In the light
of these observations one could formulate the following research question: given
the fact that creation and destruction of information seem to be symmetrical over
the time axis, could one develop a time-invariant description of computational

processes for which creation of information is the same process as destruction
of information with the time arrow reversed? A more concise version of the
same question is: are destruction and creation of information computationally
symmetrical in time? The main part of this paper is dedicated to a positive
answer to this question.

Prima facie it seems that we compute to get new information. So if we want
to know what the exact value of 10! is, then answer 3628800 really contains infor-
mation for us. It tells us something we did not know. We also have the intuition,
that the harder it is to compute a function, the more value (i.e. information) the
answer contains. So 10! in a way contains more information than 102. Yet from
a mathematical point of view 10! and 3628800 are just different descriptions of
the same number. The situation becomes even more intriguing if we turn our
intention to the simulation of processes on a computer that really seem to create
new information like the growth of a tree, game playing or the execution of a
genetic algorithm. What is happening here if computation cannot generate in-
formation? What is the exact relation between information generating processes
that we find in our world and our abstract models of computation?

In most curricula theories about information and computation are treated
in isolation. That is probably the reason why the rather fundamental question
studied in this paper up till now has received little attention in computer science:
What is the interaction between information and computation? Samson Abram-
sky has posed this question in a recent publication with some urgency (without
offering a definitive answer): We compute in order to gain information, but how
is this possible logically or thermodynamically? How can it be reconciled with the
point of view of Information Theory? How does information increase appear in
the various extant theories? ([1]), pg. 487). Below we will formulate a partial
answer to this question by means of an analysis of time invariant descriptions of
computational processes.

2 A formal framework: meta-computational space

In order to study the interplay between entropy, information and computation
we need to develop a formal framework. For this purpose we develop the notion of
meta-computational space in this section: formally the space of the graphs of all
possible computations of all possible Turing machines. The physical equivalent
would be the space of all possible histories of all possible universes.

C(x) will be the classical Kolmogorov complexity of a binary string x, i.e. the
length of the shortest program p that computes x on a reference universal Tur-
ing machine U . Given the correspondence between natural numbers and binary
strings, M consists of an enumeration of all possible self-delimiting programs for
a preselected arbitrary universal Turing machine U . Let x be an arbitrary bit
string. The shortest program that produces x on U is x∗ = argminM∈M(U(M) =
x) and the Kolmogorov complexity of x is C(x) = |x∗|. The conditional Kol-
mogorov complexity of a string x given a string y is C(x|y), this can be inter-
preted as the length of a program for x given input y. A string is defined to

be random if C(x) ≥ |x|. I(x) is the classical integer complexity function that
assigns to each integer x another integer C(x)[8].

We will follow the standard textbook of Hopcroft, Motwani and Ullman for
the basic definitions ([7]). A Turing machine (TM) is described by a 7-tuple

M = (Q, Σ, Γ, δ, q0, B, F)

Here, as usual, Q is the finite set of states, Σ is the finite set of input symbols
with Σ ⊂ Γ , where Γ is the complete set of tape symbols, δ is a transition
function such that δ(q, X) = (p, Y, D), if it is defined, where p ∈ Q is the next
state, X ∈ Γ is the symbol read in the cell being scanned, Y ∈ Γ is the symbol
written in the cell being scanned, D ∈ {L,R} is the direction of the move, either
left or right, q0 ∈ Q is the start state, B ∈ Γ −Σ is the blank default symbol on
the tape and F ⊂ Q is the set of accepting states. A move of a TM is determined
by the current content of the cell that is scanned and the state the machine is
in. It consists of three parts:

1. Change state
2. Write a tape symbol in the current cell
3. Move the read-write head to the tape cell on the left or right

A nondeterministic Turing machine (NTM) is equal to a deterministic TM
with the exception that the range of the transition function consists of sets of
triples:

δ(q, X) = {(p1, Y1, D1), (p2, Y2, D2), ..., (pk, Yk, Dk)}
A TM is a reversible Turing machine (RTM) if the transition function δ(q, X) =

(p, Y,D) is one-to-one, with the additional constraint that the movement D of
the read-write head is uniquely determined by the target state p.

Definition 1. An Instantaneous Description (ID) of a TM during its execution
is a string X1X2...Xi−1qXiXi+1...Xn in which q is the state of the TM, the
tape head is scanning the i-th head from the left, X1X2...Xn is the portion of
the tape between the leftmost and the rightmost blank. Given an Instantaneous
Description X1X2...Xi−1qXiXi+1...Xn it will be useful to define an Extensional
Instantaneous Description (EID) X1X2...Xi−1XiXi+1...Xn, that only looks at
the content of the tape and ignores the internal state of the machine and an
Intensional Instantaneous Description (IID) qXiD, that only looks at the content
of the current cell of the tape, the internal state of the machine and the direction
D in which the head will move.

We make the jump from an object- to a meta-level of descriptions of com-
putations by means of considering the set of all possible transitions between
instantaneous descriptions.

Definition 2. Let < IDM ,`M> be the configuration graph of all possible trans-
formations of a machine M , i.e. IDM is the countable set of all possible instan-
taneous descriptions and for IDi,j ∈ IDM :

IDi `M IDj

iff TM can reach IDj in one move from IDi. IDm is reachable from IDi iff
there exists a sequence of transformations from one to the other:

(IDi `∗M IDm) ⇔ IDi `M IDj `M IDk...IDl `M IDm

The intensional description of such a transformation will be: (IIDi `∗M IIDm).
The extensional description will be: (EIDi `∗M EIDm)

Note that two machines can perform computations that are extensionally iso-
morphic without intensional isomorphism and vice-versa. We refer here to trans-
formations rather than computations since, in most cases, only a subpart of the
configuration graph represents valid computations that start with a start state
and end in an accepting state. Note that the class of all possible instantaneous
descriptions for a certain machine contains for each possible tape configuration,
at each possible position of the head on the tape an instance for each possible
internal state. Most of these configurations will only be the result, or lead to,
fragments of computations. On the other hand all valid computations, that start
with a start state and either continue forever or end in an accepting state will
be represented in the configuration graph.

Note that there is a strict relation between the structure of the transition
function δ and the configuration graph: for a deterministic machine the con-
figuration graph has only one outgoing edge for each configuration, for a non-
deterministic machine the configuration graph can have multiple outgoing edges
per ID, for a reversible machine, the graph consists only of a number of linear
paths without bifurcations either way.

Lemma 1. Let M be a Turing machine. We have C(< IDM ,`M>) < C(M)+
O(1)

Proof: Given M the graph < IDM ,`M> can be constructed by the following
algorithm: create IDM by enumerating the language of all possible ID’s, at
each step of this process run M for one step on all ID’s created sofar and add
appropriate edges to `M when M transforms IDi in IDj .

The finite object M and the infinite object < IDM ,`M> identify the same
structure. We use here two variants of the Kolmogorov complexity: the complex-
ity finite object M is defined by the smallest program that computes the object
on a universal Turing machine and then halts, the complexity of < IDM ,`M>
is given by the shortest program that creates the object in an infinite run.

Definition 3. Given an enumeration of Turing machines the meta-computational
space is defined as the disjunct sum of all configuration graphs < IDMi ,`Mi>
for i ∈ N.

The meta-computational space is a very rich object in which we can study
a number of fundamental questions concerning the interaction between infor-
mation and computation. We can also restrict ourselves to the study of either
extensional or intensional descriptions of computations and this will prove use-
ful, e.g. when we want to study the class of all computational histories that
have descriptions with isomorphic pre- or suffixes. For the moment we want to
concentrate on time symmetries in meta-computational space.

3 Time symmetries in meta-computational space

In this paragraph we study the fact that some well known classes of computa-
tional processes can be interpreted as each others symmetrical images in time,
i.e. processes in one class can be described as processes in the other class with the
time arrow reversed, or to say it differently as processes taking place in negative
time. We can reverse the time arrow for all possible computations of a certain
machine by means of reversing all the edges in the computational graph. This
motivates the following notation:

Definition 4.

(IDi ` IDj) ⇔ (IDj a IDi)

(IDi `∗ IDk) ⇔ (IDk a∗ IDi)

The analysis of valid computations of TM can now be lifted to the study
of reachability in the configuration graph. The introduction of such a meta-
computational model allows us to study a much more general class of computa-
tions in which the arrow of time can be reversed. We will introduce the following
shorthand notation that allows us to say that M−1 is the same machine as M
with the arrow of time reversed:

M =< IDM ,`M>⇔ M−1 =< IDM ,aM>

Intuitively the class of languages that is ’computed’ in negative time by a certain
Turing machine is the class of accepting tape configurations that can be reached
from a start state. We have to stress however, that moving back in time in the
configuration graph describes a process that is fundamentally different from the
standard notion of ’computation’ as we know it. We give some differences:

– The standard definition of a Turing machine knows only one starting state
and possibly several accepting states. Computing in negative time will trace
back from several accepting states to one start state.

– The interpretation of the δ-function or relation is different. In positive time
we use the δ-function to decide which action to take given a certain state-
symbol combination. In negative time this situation is reversed: which state-
symbol-move combination could have lead to a certain action.

– At the start of a computation there could be a lot of rubbish on the tape
that is simply not used during the computation. All computations starting
with arbitrary rubbish are in the configuration graph. We want to exclude
these from our definitions and stick to some minimal definition of the input
of a computation in negative time.

In order to overcome these difficulties the following lemma will be useful:

Lemma 2 (Minimal Input-Output Reconstruction). If an intensional de-
scription of a fragment of a (deterministic or non-deterministic) computation of
a machine M : (IIDi `∗M IIDm) can be interpreted as the trace of a valid compu-
tation then there exist a minimal input configuration IDi and a minimal output
configuration IDm for which M will reach IDm starting at IDi. Otherwise the
minimal input and output configuration are undefined.

Proof: The proof first gives a construction for the minimal output in a positive
sweep and then the minimal input in a negative sweep.

Positive sweep: Note that (IIDi `∗M IIDm) consists of a sequence of descrip-
tions: qiXiDi ` qi+1Xi+1Di+1 ` ... ` qmXmDm. Reconstruct a computation in
the following way: Start with an infinite tape for which all of the symbols are
unknown. Position the read-write head at an arbitrary cell and perform the
following interpretation operation: interpret this as the state-symbol-move con-
figuration qiXiDi. Now we know the contents of the cell Xi, the state qi and the
direction D of the move of the read-write head. The action will consist of writ-
ing a symbol in the current cell and moving the read-write head left or write.
Perform this action. The content of one cell is now fixed. Now there are two
possibilities:

1. We have the read write head in a new cell with unknown content. From
the intensional description we know that the state symbol combination is
qi+1Xi+1Di+1, so we can repeat the interpretation operation for the new
cell.

2. We have visited this cell before in our reconstruction and it already contains
a symbol. From the intensional description we know that the state symbol
combination should be qi+1Xi+1Di+1. If this is inconsistent with the con-
tent of the current cell, the reconstruction stops and the minimal output is
undefined. If not, we can repeat the interpretation operation for the new cell.

Repeat this operation till the intensional description is exhausted. Cells on the
tape that still have unknown content have not been visited by the computational
process: we may consider them to contain blanks. We now have the minimal
output configuration on the tape IDm.

Negative sweep: start with the minimal output configuration IDm. We know
the current location of the read write head and the content of the cell. From the
intensional description (IIDi `∗M IIDm) we know which state symbol combi-
nation qmXmDm has lead to IDm: from this we can construct IDm−1. Repeat
this process till the intensional description is exhausted and we read IDi which
is the minimal input configuration.

Lemma 2 gives us a way to tame the richness of the configuration graphs:
we can restrict ourselves to the study of computational processes that are in-
tensionally equivalent, specifically intensionally equivalent processes that start
with a starting state and end in an accepting state. This facilitates the following
definition:

Definition 5. If (IIDi `∗M IIDm) is an intensional description of a computa-
tion then

INPUT(IIDi `∗M IIDm) = x

gives the minimal input x and

OUTPUT(IIDi `∗M IIDm) = y

gives the minimal output y. With some abuse of notation we will also apply these
functions to histories of full ID’s.

Definition 6. Given a Turing machine M the language recognized by its coun-
terpart M−1 in negative time is the set of minimal output configurations asso-
ciated with intensional descriptions of computations on M that start in a start
state and end in an accepting state.

Definition 7. The class P−1 is the class of languages that are recognized by an
M−1

i with i ∈ N in time polynomial to the length of minimal input configuration.

Note that, after a time reversal operation, the graph of a deterministic ma-
chine is transformed in to a specific non-deterministic graph with the charac-
teristic that each ID has only one incoming edge. We will refer to such a model
of computation as quasi-reversible. The essence of this analysis is that, given a
specific machine M , we can study its behavior under reversal of the arrow of
time.

We can use the symmetry between deterministic and quasi-reversible com-
puting in proofs. Whatever we prove about the execution of a program on M
also holds for M−1 with the time reversed and vice versa.

Let QRTM be the class of quasi-reversible non-deterministic machines that
are the mirror image in time of the class of deterministic machines TM , and
QRP be the class of languages that can be recognized by QRTM in polynomial
time. The lemma below is at first sight quite surprising. The class of languages
that we can recognize nondeterministically in polynomial time is the same class
as the class of polynomial quasi-reversible languages:

Lemma 3. The class LQRP of languages recognized by a QRTM in polynomial
time is NP.

Proof:1) LQRP ⊆ NP : The class of languages recognized by quasi-reversible
machines is a subclass of the class of languages recognized by non-deterministic
machines. This is trivial since there is a non-deterministic machine that produces
any {0, 1}≤k in time k.

2) NP ⊆ LQRP : The class NP is defined in a standard way in terms of a
checking relation R ⊆ Σ∗×Σ∗

1 for some finite alphabets Σ∗ and Σ∗
1 . We associate

with each such relation R a language LR over Σ∗ ∪Σ∗
1 ∪# defined by

LR = {w#y|R(w, y)}

where the symbol # is not in Σ. We say that R is polynomial-time iff LR ∈ P .
Now we define the class NP of languages by the condition that a language L
over Σ is in NP iff there is k ∈ N and a polynomial-time checking relation R
such that for all w ∈ Σ∗.,

w ∈ L ⇔ ∃y(|y| < |w|k & R(w, y))

where |w| and |y| denote the lengths of w and y, respectively. Suppose that M
implements a polynomial-time checking relation for R. Adapt M to form M ′

that takes R(w, y) as input and erases y from the tape after checking the rela-
tion, the transformation of M to M−1 is polynomial. The corresponding QRTM
M ′−1 will start with guessing a value for y non-deterministically and will finish
in a configuration for which the relation R(w, y) holds in polynomial time since
|y| < |w|k and the checking relation R is polynomial.

We can formulate the following result:

Theorem 1. NP = P−1

Proof: immediate consequence of lemma 3 and definition 7.
NP is the class of languages that can be recognized by deterministic Turing

machines in negative time. This shows that quasi-reversible computing is in a
way a more natural model of non-deterministic computing than the classical
full-blown non-deterministic model. The additional power is unnecessary.

4 The interplay of computation and information

We now look at the interplay between information and computation. The tool we
use will be the study of the changes in C(IDt), i.e. changes in the Kolmogorov
complexity of instantaneous descriptions over time. We make some observations:

– If IDi `M IDj then the information distance between the instantaneous
descriptions IDi and IDj is log k + 1 at most where k is the number of
internal states of M .

– If EIDi `M EIDj then the information distance between the extensional
descriptions EIDi and EIDj is 1 bit at most.

– If IIDi `M IIDj then the information distance between the intensional
descriptions IIDi and IIDj is log k + 2 at most where k is the number of
internal states of M .

– Let x be the minimal input of a computational fragment (IIDi `∗M IIDm)
and let y be the minimal output. We have

C(x|IIDi `∗M IIDm) = C(y|IIDi `∗M IIDm) = O(1)

This is an immediate consequence of lemma 2.

We can now identify some interesting typical machines:

– No machine can produce information faster than 1 bit per computational
step. There is indeed a non-deterministic machine that reaches this ’speed’:
the non-deterministic ’coin-flip’ automaton that writes random bits. For such
an automaton we have with high probability C(IDt) ≈ t. In negative time
this machine is the maximal eraser. It erases information with the maximum
’speed’ of 1 bit per computational step.

– A unary counting machine produces information with a maximum speed of
log t. Note that C(t) = I(t), i.e. the complexity at time t is equal to the value
of the integer complexity function. The function I(x) has indefinite ’dips’
in complexity, i.e. at those places where it approaches a highly compressible
number. When t approaches such a dip the information produced by a unary
counting machine will drop as the machine continues to write bits. The
counter part of the unary counter in negative time is the unary eraser. It
erases information with the maximal speed of log t, although at times it will
create information by erasing bits.

– The slowest information producer for its size is the busy-beaver function.
When it is finished it will have written a enormous amount of bits with a
conditional complexity of O(1). Its counter part in negative time will be a
busy-glutton automaton that ’eats’ an enormous amount of bits of an exact
size.

These insights allow us to draw a picture that tells us how information and
computation are intertwined in a deterministic process.

The complexity of the history of a computation is related to the complexity
of the input given the output. There are two forms of complexity involved in a
deterministic computation:

– Program Complexity: this is the complexity of the input and its subsequent
configurations during the process. It can not grow during the computation.
Most computations reduce program complexity.

– Program Counter complexity: This is the descriptive complexity of the pro-
gram counter during the execution of the process. It is 0 at the beginning,
grows to log a in the middle and reduces to 0 again at the end of the com-
putation.

The relationship between these forms of complexity is given by the following
theorem:

Theorem 2 (Information exchange in Deterministic Computing). Sup-
pose M is a deterministic machine and IDi `M IDa is a fragment of an accept-
ing computation, where IDm contains an accepting state. For every i ≤ k ≤ a
we have:

1. Determinism: C(IDi+k+1 `M IDa|M, IDi+k) = O(1), i.e. at any moment
of time if we have the present configuration and the definition of M then the
future of the computation is known.

2. Program counter complexity from the start: C(IDt|ID0,M) < (log k)+O(1),
this constraint is known during the computation.

Fig. 1. Schematic representation of the various types of complexity estimates involved
in a deterministic computation

3. Program counter complexity from the end: C(IDt|ID0,M) < (log a − k) +
O(1), this constraint is not known during the computation.

4. Program complexity:

C((IIDi+k `∗M IIDa)|M) = C(INPUT(IIDi+k `∗M IIDa)|M) + O(1)

Proof:

1. Trivial, since M is deterministic.
2. Any state IDk at time k can be identified by information of size log k if the

initial configuration and M are known.
3. Any state IDk at time k can be identified by information of size log(a− k)

if the total description of the accepting computational process and M are
known.

4. By the fact that the computation is deterministic it can be reconstructed
from the minimal input, given M . By lemma 2, given M , the minimal input
can be reconstructed from (IIDi `∗M IIDa). This gives the equality modulo
O(1).

We cannot prove such a nice equality for the minimal output. Note that even
if the following inequality holds:

C((IIDi `∗M IIDa)|M) ≥ C((IIDi+k `∗M IIDa)|M) + O(1)

this does not imply that:

C(OUTPUT(IIDi `∗M IIDa)|M) ≥ C(OUTPUT(IIDi+k `∗M IIDa)|M) + O(1)

As a counter example: observe that a program that erases a random string has
a string of blanks as minimal output. A longer string still can have a lower
Kolmogorov complexity.

In computations that use counters, program complexity and program counter
complexity are mixed up during the execution. In fact one can characterize vari-
ous types of computations by means of their ’information signature’. Informally,
at extremes of the spectrum, one could distinguish:

– Pure Information Discarding Processes: in such processes the program counter
does not play any role. They reach an accepting state by means of system-
atically reducing the input. Summation of a set of numbers, or erasing of a
string are examples.

– Pure Counting Processes: For x=1 to i write("1"): The conditional com-
plexity of the tape configuration grows from 0 to log i and then diminishes
to 0 again.

– Pure Search Processes: In such processes the input is not reduced but is kept
available during the whole process. The information in the program counter
is used to explore the search space. Standard decision procedures for NP-
hard programs, where the checking function is tested on an enumeration of
all possible solutions, are an example.

A deeper analysis of various information signatures of computational processes
and their consequences for complexity theory is a subject of future work.

5 Discussion

We can draw some conclusions and formulate some observations on the basis of
the analysis given above.

1) Erasing and creating information are indeed, as suggested in the intro-
duction, from a time invariant computational point of view the same processes:
The quasi-reversible machine that is associated with a simple deterministic ma-
chine that erases information is a non-deterministic machine writing arbitrary
bit-strings on the tape. This symmetry also implies that creation of information
in positive time involves destruction of information in negative time.

2) The class of quasi-reversible machines indeed describes the class of data
sets from which we can learn something in the following way: If L is the language
accepted by M then M−1 generates L. M−1 is an informer for L in the sense

of [6], every sentence in L will be non-deterministically produced by M−1 in the
limit. QRTM is the class of all informers for type-0 languages.

3) These insights suggests that we can describe stochastic processes in the real
world as deterministic processes in negative time: e.g. throwing a dice in positive
time is erasing information about its ’future’ in negative time, the evolution of
species in positive time could be described as the ’deterministic’ computation of
their ancestor in negative time. A necessary condition for the description of such
growth processes as computational processes is that the number of bits that can
be produced per time unit is restricted. A stochastic interpretation of a QRTM
can easily be developed by assigning a set of probabilities to each split in the δ
relation. The resulting stochastic-QRTM is a sufficient statistic for the data sets
that are generated.

4) The characterization of the class NP in terms of quasi-reversible computing
seems to be more moderate than the classical description in terms of full non-
deterministic computing. The full power of non-deterministic computing is never
realized in a system with only one time direction.

5) Processes like game playing and genetic algorithms seem to be meta-
computational processes in which non-deterministic processes (throwing a dice,
adding mutations) seem to be intertwined with deterministic phases (making
moves, checking the fitness function)

6) The time-symmetry has consequences for some philosophical positions.
The idea that the evolution of our universe can be described as a deterministic
computational process has been proposed by several authors (Zuse, Bostrom,
Schmidthuber, Wolfram [10], Lloyd [9], etc.). It nowadays is referred to as pan-
computationalism [5]. If deterministic computation is an information discarding
process then it implies that the amount of information in the universe rapidly
decreases. This contradicts the second law of thermodynamics. On the other
hand, if the universe evolves in a quasi-reversible way, selecting possible config-
urations according to some quasi-reversible computational model, it computes
the big bang in negative time. The exact implications of these observations can
only be explained by means of the notion of facticity [3], but that is another
discussion. The concept of quasi-reversible computing seems to be relevant for
these discussions [2].

6 Conclusion

Computing is moving through meta-computational space. For a fixed Turing ma-
chine Mi such movement is confined to one local infinite graph < IDMi ,`Mi>. If
Mi is deterministic then M−1

i is non deterministic. If M is information discard-
ing then M−1 ’creates’ information. The two fundamental complexities involved
in a deterministic computation are Program Complexity and Program Counter
Complexity. Programs can be classified in terms of their ’information signature’
with pure counting programs and pure information discarding programs as two
ends of the spectrum. The class NP is simply the class of polynomial determinis-
tic time calculations in negative time. Thinking in terms of meta-computational

space allows us to conceptualize computation as movement in a certain space
and is thus a source of new intuitions to study computation. Specifically a deeper
analysis of various information signatures of computational (and other) processes
is a promising subject for further study.

Bibliography

[1] S. Abramsky, Information, Processes Games, in Handbook of the philosophy
of information, P.W.Adriaans, J.F.A.K. van Benthem eds. in Handbook of
the philosophy of science, Series edited by D. M. Gabbay, P. Thagard and J.
Woods, eds. Elsevier, pg. 483, 550, 2009.

[2] Handbook of the philosophy of information, P.W.Adriaans, J.F.A.K. van
Benthem eds. in Handbook of the philosophy of science, Series edited by D.
M. Gabbay, P. Thagard and J. Woods, eds. Elsevier, 2009.

[3] Adriaans , P.W. , (2009) Between Order and Chaos: The Quest for Mean-
ingful Information, Theory of Computing Systems, Volume 45 , Issue 4 (July
2009), Special Issue: Computation and Logic in the Real World; Guest Edi-
tors: S. Barry Cooper, Elvira Mayordomo and Andrea Sorbi, 650-674.

[4] Adriaans, P. Vitányi, P., Approximation of the Two-Part MDL Code, Com-
put. Sci. Dept., Univ. of Amsterdam, Amsterdam; Information Theory, IEEE
Transactions on, Jan. 2009 Volume: 55, Issue: 1 On page(s): 444-457.

[5] Floridi, L. (2008) Trends in the Philosophy of information, in Handbook
of Philosophy of Information, P.W.Adriaans, J.F.A.K. van Benthem (eds.),
Elseviers Science Publishers.

[6] Gold, E. Mark, Language Identification in the Limit, Information and Con-
trol, pg. 447,474,1967.

[7] J.E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation Second Edition. Addison-
Wesley, 2001.

[8] Ming Li and Paul Vitányi, An Introduction to Kolmogorov Complexity and
Its Applications, Third Edition, Springer Verlag, 2008.

[9] S. Lloyd, ”Ultimate physical limits to computation”. Nature 406: 10471054,
2000.

[10] S. Wolfram, A new kind of science, Wolfram Media Inc., 2002.

