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know and understand the world beause our mind partiipates in this world ofideas. Learning to understand the world is in fat a kind of remembering whatone already knows. Later philosophers like William of Oam threw the worldof ideas in the dustbin ("entia non sunt multipliands praetor neessitated", or"entities should not be multiplied beyond neessity") in favor of the nominalistiview that our desriptions of the world should be as simple as possible. Thispriniple, often referred to as Oam's razor (to ut o� Plato's beard of ideas),has had a deisive inuene in the history of siene. In modern methodologyof siene this notion is studied under various guises: Oam's razor [14℄, theminimal desription length (MDL) priniple [6; 16℄, two-part-ode optimization[30℄, learning as data ompression [32℄ et. All these approahes are indebtedto the formulation of an algorithmi solution to the problem of indution bySolomono� [29℄, Chaitin [7℄ and Kolmogorov [31℄, whih is one of the greaterahievements of siene in the 20th entury.In its modern guise this researh often goes hand in hand with a omputation-alisti oneption of the human mind as a kind of general problem solver. Thisoneption an, via the inuene of Carnap, also be traed bak to the empiriistpsyhology of the mind of Loke and Hume [20; 18℄. Solomono�'s solution to theindution problem is assoiated with the onept of Kolmogorov omplexity asa measure of the amount of information in a binary objet. Roughly the Kol-mogorov omplexity of a binary string is the length of the shortest pre�x-freeprogram that omputes this objet on a universal Turing mahine. This insightallows us to formulate the notion of a universal distribution that assigns an a-priori probability to an objet that is inversely logarithmi in its Kolmogorovomplexity. Espeially Solomono�, who was the �rst to formulate the idea of auniversal distribution, seems to have been driven by an ambition to solve thegeneral problem of mathematial indution on one hand and formulate a generaltheory of optimal human learning based on evolution on the other: My generalonlusion was that Bayes' theorem was likely to be the key. That a person wasborn with a reasonably good builtin a priori probability distribution. The per-son would then make preditions and deisions based on this distribution. Thedistribution was then modi�ed by their life experiene. The initial "Builtin"distribution was obtained by organi evolution. There was a strong seletion infavor of organisms that made deisions on the basis of "good" a priori probabil-ity distributions. The organisms making poor deisions would tend to have fewerdesendants. [29℄ This researh program seems to be the driving fore behindthe work of researhers like Shmidhuber [27℄ and Hutter [19℄. For a disussionof ompressibility as a general ognitive priniple see [8℄.Oam's razor has been questioned throughout history with �ere opponents(e.g. [14℄) and strong defenders (e.g. [32℄). Until reently the view of learning asalgorithmi data ompression did not seem to have muh pratial value. Lotsof learning algorithms in fat perform some kind of data ompression, but thiswas not a guiding priniple of their design [23; 12℄. Two developments in the last�ve years have hanged this perspetive quite fundamentally : 1) a better un-derstanding of the mathematis behind ompression, spei�ally Kolmogorovs



struture funtion [30; 31℄ and 2) the appliation of existing implementationsof ompression algorithms to approximate the ideal (and unomputable) Kol-mogorov omplexity as pioneered by Cilibrasi and Vit�anyi [9; 10℄.1.1 A thermodynami interpretation of Solomono�'s programAt this moment we have not only a muh better understanding of the theoretialissues behind data ompression. It has also beome lear that MDL as a universalindutive methodology has aws. Gr�unwald and Langford have identi�ed ondi-tions under whih MDL behaves suboptimal [16℄. Adriaans and Vitanyi showedthat, although an optimal ompression of a data set produes in a ertain sensean optimal theory, this does not imply that inremental ompression of datasets, suh as most learning algorithms perform, is a generally valid strategy [4℄.The quality of our prediitive models may vary inde�nitely with eah inremen-tal ompression step we make. Beause of the unomputatibility of the optimalompression we an never be sure to have reahed a good theory in any �nitetime. In a purely algorithmi universe MDL atually would not be a very goodstrategy. The fat that bounded resoure data ompression 'works' in our uni-verse has to do with its spei� physial struture. Consequently there an notbe a pure algorithmi explanation of the validity MDL. The extremely eÆientdata ompression that the human mind is able to perform seems to be drivenby bias that are not purely mathematial. In this ontext the 'built-in' a prioridistribution that was referred to in the itation of Solomono� above ould beupdated in our theoretial models along the following lines: "We are intelligentagents that have evolved via a proess of evolution in a universe that has thefollowing struture:1. It is spatio temporal.2. It is subjet to elementary physial laws. In partiular it obeys the laws ofthermodynamis. It has an irreversible arrow of time that is assoiated witha ontinuous inrease in entropy.3. It supports the spontaneous emergene of universal omputational proesses[33℄. Sine the apaity to store information presupposes the existene ofreversible proesses (bit-ips) and sine reursive funtions disard informa-tion this implies that it ontains systems that an sustain thermodynaminon-equilibrium states during a ertain time.4. It supports various funtions for the distribution of information throughspae: light (vision), mehanial interation (touh, hearing) and hemialinteration (smell, taste). These information distribution funtions at as'lossy' homomorphisms that only onvey partial information. In general theinformation deays at least polynomially with the distane in spae.In the ontext of evolution we may expet our sensory organs and generalproblem solving apabilities to be optimized for these onditions. In partiularone would expet agents emerging in these onditions to have advaned apabili-ties to evaluate spatial variations in entropy. Sine systems inrease their entropy



over time, plaes with low entropy are naturally 'interesting' and may reate lifesustaining onditions. Also the fat that suh agents ould emerge in an evolu-tionary proess presupposes the environment to be benign in the following sense:the lossy information distribution funtions onvey enough information to sur-vive. This implies that detetion of entropy variations that are preserved underlossy ompression (i.e. general detetion of density variations) is suÆient forsurvival.1This thermodynami variant of Solomono�'s program moves us away from amore radial interpretation of his work implying a omputationalisti view of theworld, i.e. the metaphysial theory that the world essentially is a omputationalproess and that the human mind is a universal omputer. The onnetion isas follows: the appliation of the universal distribution to a data set seems toimply that we regard this data set as the result of a omputational proess. Ifwe interpret the human mind as a general problem solving devie that is the re-sult of an evolutionary proess then it is natural to suppose that it is optimizedfor data sets that are produed by omputational proesses, i.e. it evolved in aworld that is itself omputational. Computationalisti ideas have been defendedby a variety of authors like Wolfram [33℄, Shmidhuber, Lloyd [22℄, Floridi andZuse: "The entire universe is being omputed on a omputer, possibly a ellularautomaton."2 It is lear that this form of omputationalism is a purely meta-physial position whih an not be veri�ed at best, but whih prima faie isat variane with plain observations we an make in everyday life: e.g. althoughthe laws of gravity an be desribed in terms of simple mathematial regulari-ties there is nothing that suggests that gravity is itself a omputational proess.Metaphysial omputationalism therefore should be rejeted as unsienti�. Fur-thermore, given the aws of MDL disussed above, it is diÆult to defend theidea that the human mind evolved as a purely algorithmi ompression basedproblem solver.The rejetion of omputationalism implies a view of omputational modelsof proesses in the world as phenomenologial : i.e. they desribe proesses in theworld without any presupposition about their ontologial status. An explanationof fat that the world at di�erent levels of aggregation and over di�erent phasetransitions an be desribed by simple high level mathematial equations remainsone of the great hallenges of siene. Assuming that the world is essentially aomputational proess will not bring this issue any loser to a solution.1 This last ondition seems to rule out exatly those data sets that given the resultsof Adriaans and Vitanyi [4℄ ould bring a general ompression based bounded prob-lem solver in to trouble. It is a well known priniple in information theory that ifa set of messages has systemati density variations it does not have maximal en-tropy. A environment is benign if the opposite ondition also holds: If a data set isompressible it has density variations. This ondition rules out the maliious demonthat presents data sets that are apparently random, but in fat an be ompressedsubstantially, e.g. deimal expansions of the number �. Suh data sets indeed seemto be suÆiently rare in our universe suh that a failure to reognize them in generaldoes not reate life threatening risks. Of ourse they still do our in nature.2 Konrad Zuse, as he referred to this as "Rehnender Raum (Zuse 1967, 1982).



1.2 Meaningful informationThere is a onnetion with the notion of meaningful information. Formal de�ni-tions of information like those of Shannon and Kolmogorov do measure informa-tion in data sets but they do not apture the notion of meaningful information.This is immediately lear when we note that the most information rih radiotransmission we ould send is pure noise. Any station following this strategywould soon loose its audiene. Data sets with maximum entropy are not on-sidered to be interesting by human beings: suh sets are rih in information butthey ontain no meaningful information. On the other hand a transmission ofpure silene would also not be onsidered to be very informative. They ontainno information at all. Meaningful information seems to exist in the 'sweet spot'between order and haos.In this paper I assoiate meaningfulness with fatiity, but this is no doubtonly a rude approximation. In general siene, in the study of human ognitionand even in art we seem to have an interest in systems that have a omplex-ity between order and haos, between boredom and noise. The 'interestingness'of these data sets is related to ompressibility ([11℄, [13℄). The thermodynamiexplanation for this seems to be the fat that, in a universe in whih entropy nat-urally inreases over time, systems that maintain a low entropy over a period oftime are 'by de�nition' interesting. Compressibility is assoiated with struture,with self-organization and with the priniples of life itself.It is important to distinguish this question from the related ambition of re-searhers that are interested in formulating a theory of optimal learners basedon Kolmogorov omplexity. Shmidhuber even has formulated a theory of al-gorithmi aesthetis and low omplexity art along these lines [26℄. Reently heintrodued a notion of interestingness as the �rst derivative of subjetive om-pressibility [28℄. This theory deals with a subjetive notion of interestingness ata ertain time for a ertain agent. Fatiity on the other hand is an a prioriquality of data sets, i.e. produts of the human mind. As suh it leads to pre-ditions that an in priniple be veri�ed empirially given the present state oftehnology. Sine I am also interested in a theory of algorithmi esthetis I willpresent a ritial disussion of the ideas of Shmidhuber in a separate paragraphat the end of this paper.3In the ontext of this paper I am not so muh interested in the de�nition ofan optimal problem solver but in the question why the universe produes datasets from whih anything an be learned at all. Why does the universe at as aooperative teaher? Why do we live in a universe in whih MDL is a valuablemethodologial priniple? The reason for this shift in diretion is the insightthat the study of algorithmi strategies for problem solving, as suh, do not ex-plain the eÆieny with whih we solve problems. Theories about algorithmiallyoptimal problems solvers give an interesting framework for the transendentalanalysis of learning but in order to explain the eÆieny of learning an analysisof additional bias is neessary. This paper does a �rst step in this diretion by3 The ideas on a dialetis of fatiity and art were presented in my Paradiso letureat the beginning of 2007.



analyzing bias that stem from thermodynamis. This shift is not in onit withSolomono�'s researh program but more or less orthogonal to it. Surprisingly,from a philosophial point of view, this hange of diretion is assoiated with ashift from an empiriist tabula rasa position to a more Cartesian/Kantian viewin whih a learning agent shares bias with the world in whih it is embedded.This should be interpreted not so muh as innate ideas, but as the theory that anagent inherits distributions from the world from whih it originates. This is fullyompatible with the observation ited above of Solomono� that human beingsare: "born with a reasonably good builtin a priori probability distribution."

Fig. 1. Fatiity sores for mixing blak and white paint. The fatiity of a data xis the produt (times 4) of the normalized entropy C(x)=Cmax(x) and the normalizedrandomness de�ieny (Cmax(x)�C(x))=Cmax(x). Con�guration 4 has the best balanebetween order and haos and thus would be the most 'interesting' one. The sores havebeen alulated using JPEG, followed by RAR ompression. Maximal entropy Cmax(x)has been approximated by adding 400 % noise to the images. The standard entropyC(x) is approximated by the �le size after ompression. Note that the resolution ofthe amera inuenes the measurements. The addition of hard pixel noise reates arandom image that the amera never ould apture. This is the reason that none ofthe pitures reah the maximal fatiity of 1.



1.3 An experimentHere is an experiment. Take a up of o�ee and pour some ream in it (SeeFigure 1). Take a piture of it with your digital amera. In the beginning theream will be just an uninteresting blob. Stir slowly and make pitures of variousstages that have nie patterns. Continue until the ream has dissolved and yourup has an even brown olor. Drink the o�ee, then look at the �le size of thedi�erent pitures.If your amera uses an adequate ompression algorithm you will �nd that the�le size has inreased up to a ertain point and then dereases. The ompressionalgorithm of your amera reets the omplexity of the data set until the momentthat the omplexity has reahed a global equilibrium and is beyond its resolution.In this experiment we have a system that evolves in time, the up of o�ee, and adata set of observations, the pitures. The rux of this experiment is that the sizeof the individual pitures somehow reets the 'interestingness' of the system. Inthe beginning there is a lot of order in the system. This is not very interesting.In the end there is an equilibrium that also has little ognitive appeal.In the following it will prove useful to desribe these ompressions in terms ofa so-alled two-part-ode: a desription of a general lass of sets, the model odeand an element or a set of elements of this set, the data-to-model-ode [30; 31℄.Let me give some examples:{ Symmetry. This is one of the most fundamental ordering priniples in na-ture. Most living reatures have symmetry: plants, trees, predator, prey. Ifa data set has symmetry it means that we only have to desribe half ofit (the data-to-model-ode) plus some information about the nature of thesymmetry of onstant length (the model-ode). In the limit suh a data setan be ompressed to at least half its size. In terms of generating languagessymmetry is ontext free: a symmetri data set an be produed by a simplememoryless entral proess. Disovering symmetry in a data set an be seenas a very simple learning problem. It an easily be disovered in linear time.For some thoughts on symmetry and entropy see [21℄.{ Repetition. In order to desribe a repeating pattern I only have to givea desription of the generating pattern (the data-to-model-ode) and someinformation about the way the pattern repeats itself (the model-ode). Rep-etition is more omplex than symmetry in the sense that it presupposes agenerating proess with a memory. In terms of languages: repetition is on-text sensitive. Finding repeating patterns in a data set is also a basi learningproblem that an be solved in time n logn [2℄.{ Grammar. A orpus of a language ould be desribed in terms of the gram-mar G (the model-ode) of the language and a set of indexes orrespondingto an enumeration of the sentenes in the orpus (the data-to-model-ode).If the size of the orpus is large enough in relation to the size of the grammarG then this desription in terms of two will be shorter than an extensionaldesription of the sentenes in the orpus. Finding this desription is a wellstudied learning problem. If the language is regular, then the task of ap-



proximating the smallest DFA onsistent with a set of sentenes is NP-hard[24; 1℄.{ Program. We ould ask ourselves, given a ertain data set: what would bethe shortest program generating this data set in a ertain programming lan-guage, or, even more general, we ould try to �nd the shortest ombination ofa Turing mahine Ti (the model-ode) and a program P (the data-to-model-ode). In a sense this would be, from a omputational point of view, theultimate ompression possible and the Turing mahine Ti would be the ulti-mate 'explanation' of the data set. Needless to say that beause of the Haltingproblem there is no algorithm that will onstrut this ultimate ompressionfor us. The problem is undeidable. Still, onditional to the programminglanguage we hoose, the notion of the shortest program generating a er-tain data set is well de�ned. Kolmogorov omplexity studies these optimalompressions from the perspetive of universal Turing mahines [31℄.Here I have desribed four lasses of learning problems (varying from veryeasy, via NP-hard, to undeidable) as ompression problems where the task isto �nd a two-part ode ompression for a data set. Apparently there is a deeponnetion between data ompression and learning.2 Learning and ThermodynamisLet us rede�ne the problem of learning as a general problem of indution. Sup-pose we study some universe � that ontains a ertain system �. In priniple �ould be anything: the human brain, the living ell, a blak hole, the weather.For the moment we will suppose that � is an isolated physial system that existsin spae and time. The problem of indution now takes the following form: anwe develop a desription of � that: 1) explains its struture 2) predits its behav-ior? Behind these issues there is still a deeper problem. Note that by denotingS as a system we have already made a hermeneuti jump. By onsidering � asa system we have deided that it is interesting. The question is: an we give aformal desription of this notion of interestingness. This last question annot beanswered by means of an analysis of the formal omplexity of � alone. In or-der to understand these questions we must look at the physial bakground andspei�ally at the theory of thermodynamis 4. The �rst law of thermodynamisdesribes the hange of internal energy U of a system in terms of the di�erenebetween the amount of heat Q absorbed by the system and the amount of workW done by the system: dU = �dQ� �dW (1)The seond law of thermodynamis states that a hange of entropy of any systemis diretly related to a hange in the amount of heat absorbed by the system,and inversely related to the absolute temperature T . Moreover the entropy neverdereases in time: dS = �dQT ; dSdt � 0: (2)4 For a disussion of the relation between physis and information see [5℄



An important notion for our researh is that of free energy :F � U � TS (3)The free energy is assoiated with the amount of energy in the system that isfree to do work. If a system is in a state of thermal equilibrium then the freeenergy is minimal and the entropy is maximal. In a gas the total entropy inequilibrium is given by: S = �Xi pi log pi (4)where pi are the individual probabilities of the veloities of the partiles. In thelimiting ase where all probabilities are equal pi = p = 1=w we get:S = lnw: (5)This is the formula that Boltzmann had engraved on his tombstone. It tells usthat in a state of maximal equilibrium the entropy is the log of the number ofaessible states.What should we onlude from this analysis in the ontext of learning? Notethat for a losed system in thermodynami equilibrium marosopially measur-able quantities do not vary over time. This means that there is very little that wean learn about a system in thermodynami equilibrium. Suh systems do nothave an internal struture and they do not have an interesting history. Conse-quently learnability is assoiated with non-equilibrium states of systems. Here isone possible objetive answer to the question what distinguishes a system fromits environment. Separate systems are those parts of the world that maintain enentropy that is di�erent from their environment during a ertain period of time.Consequently learnable systems are assoiated with variation in entropy. Thisimplies no maximal entropy and thus an amount of free energy larger than zero.Self-organization is typially assoiated with systems that maintain an entropythat is di�erent from the environment for a ertain period of time. A world thatis in a state of thermal equilibrium does not ontain any meaningful information,has no struture, no interesting development and no free energy.3 Kolmogorov omplexityNow we turn our attention to Kolmogorov omplexity as a theory about optimalomplexity of data sets. Let x; y; z 2 N , where N denotes the natural numbersand we identify N and f0; 1g� aording to the orrespondene(0; �); (1; 0); (2; 1); (3; 00); (4; 01); : : :Here � denotes the empty word. The length jxj of x is the number of bits in thebinary string x, not to be onfused with the ardinality jSj of a �nite set S. Forexample, j010j = 3 and j�j = 0, while jf0; 1gnj = 2n and j;j = 0. The emphasis ison binary sequenes only for onveniene; observations in any alphabet an be



enoded in a `theory neutral' way. Below we will use the natural numbers andthe binary strings interhangeably. In the rest of the paper we will interpret theset of models M in the following way:De�nition 1. Given the orrespondene between natural numbers and binarystrings,M onsists of an enumeration of all possible self-delimiting programs fora preseleted arbitrary universal Turing mahine U .5 Let x be an arbitrary bitstring. The shortest program that produes x on U is x� = argminM2M(U(M) =x) and the Kolmogorov omplexity of x is C(x) = jx�j. The onditional Kol-mogorov omplexity of a string x given a string y is C(xjy), this an be inter-preted as the length of a program for x given input y. A string is de�ned to berandom if C(x) � jxj.This makesM one of the most general model lasses with a number of verydesirable properties: it is universal sine all possible programs are enumerated,beause the programs are self-delimiting we an onatenate programs at will,in order to reate omplex objets out of simple ones we an de�ne an a-prioriomplexity and probability for binary strings. There are also some less desirableproperties: C(x) annot be omputed (but it an be approximated) and C(x) isasymptoti, i.e. sine it is de�ned relative to an arbitrary Turing mahine U itmakes less sense for objets of a size that is lose to the size of the de�nition ofU . Details an be heked in [31℄. We have:argminM2M � logP (M)� logP (DjM) =argminM2MC(M) + C(DjM) =MMDL (6)Under this interpretation of M, the length of the optimal ode for an objet isequivalent to its Kolmogorov omplexity.In this paper I will often use the notions of typiality and inompressibilityof elements of a set, e.g. in those ases where I state that the vast majority ofelements of a set have a ertain quality. This might at �rst sight sound a bitinaurate. To show that this notion atually has an exat de�nition I give thefollowing theorem due to Li and Vit�anyi [31℄ pg. 109):Theorem 1. Let  be a positive integer. For eah �xed y, every �nite set A ofardinality m has at least m(1� 2�) + 1 elements x with C(xjy) � logm� .Proof: The number of programs of length less than logm�  islogm��1Xi=0 2i = 2logm� � 1Hene, there are at least m�m2� + 1 elements in A that have no program oflength less than logm� .5 Here the notational onventions of two disiplines lash. U is the internal energy ofa system U(x) is the Universal Turing mahine with input x. Whih interpretationis meant should be lear from the ontext.



This shows that in the limit the number of elements of a set that have lowKolmogorov omplexity is a vanishing fration. In the limit a typial element ofa set is a random element. In general the vast majority of elements of a set isnot ompressible. One of the problems with Kolmogorov omplexity is that itspei�es the length of a program but tells us nothing about the time omplexityof the omputation involved. Therefore Kolmogorov omplexity an not be useddiretly to prove lower bounds for the time omplexity of problems.3.1 Randomness de�ienyIt is important to note that objets that are non-random are very rare. To makethis more spei�: in the limit the density of ompressible strings x in the setf0; 1g�k for whih we have C(x) < jxj is zero [31℄. The overwhelming majorityof strings is random. In di�erent words: an element is typial for a data set ifand only if it is random in this data set. In yet di�erent words: if it has maximalentropy in the data set. This insight allows us to formulate a theory independentmeasure for the quality of models: randomness de�ieny.We start by giving some estimates for upper-bounds of onditional omplex-ity. Let x 2M be a string in a �nite model M thenC(xjM) � log jM j+O(1) (7)i.e. if we know the set M then we only have to speify an index of size log jM jto identify x in M . Consequently:C(x) � C(M) + log jM j+O(1) (8)The fatorO(1) is needed for additional information to reonstrut x fromM andthe index. Its importane is thus limited for larger data sets. These de�nitionsmotivate the famous Kolmogorov struture funtion:hx(�) = minS flog jSj : x 2 S;C(S) � �g (9)Here � limits the omplexity of the model lass S that we onstrut in orderto 'explain' an objet x that is identi�ed by an index in S. 6 Let D � M be asubset of a �nite model M . We speify d = jDj and m = jM j. Now we have:C(DjM;d) � log�md�+O(1) (10)Here the term �md � spei�es the size of the lass of possible seletions of d elementsout of a set of m elements. The term log �md � gives the length of an index for thisset. If we know M and d then this index allows us to reonstrut D.A ruial insight is that the inequalities 7 and 10 beome 'lose' to equalitieswhen respetively x and D are typial for M , i.e. when they are random in M .6 This � ould be seen as a fator that limits the resolution of the amera in �gure 1.



This typiality an be interpreted as a measure for the goodness of �t of themodel M . A model M for a data set D is optimal if D is random in M , i.e. therandomness de�ieny of D inM is minimal. The following de�nitions formulatethis intuition. The randomness de�ieny of D in M is de�ned by:Æ(DjM;d) = log�md�� C(DjM;d); (11)for D � M , and 1 otherwise. If the randomness de�ieny is lose to 0, thenthere are no simple speial properties that single D out from the majority ofdata samples to be drawn from M .The minimal randomness de�ieny funtion is�x(�) = �D(�) = minM fÆ(DjM) :M � D; C(M) � �g; (12)If the randomness de�ieny is minimal then the data set is typial for thetheory and, with high probability, future data sets will share the same harater-istis, i.e. minimal randomness de�ieny is also a good measure for the futureperformane of models. For a formal proof of this intuition, see [30℄.3.2 Kolmogorov omplexity meets thermodynamisIn this paragraph we analyze the following entral theorem that relates the freeenergy of a system with the randomness de�ieny of the data set resulting fromobservations of the system:Theorem 2. For a stati measurement ht : � ! f0; 1g� at moment t of adynami system � with free energy F we have:ht(F ) = Æ(x):Here Æ(x) is the randomness de�ieny of the data set x represented as a string.Proof: Consider the following thought experiment. We ollet a number of ob-servations (measurements) of a system � at a ertain time t. A paradigmatiexample ould be a single photo of a dynami system that evolves in time, saya satellite piture of a hurriane. Suh a piture ould be seen as a homomor-phism from a system � to a data set x. Call the system � and the data setthat results from the measurements D represented as a binary string x. Sinethe information in the measurements is supposed to be representative, the in-formation in the string x reets the thermodynami state of the system frozenin time. Suppose we want to de�ne suh a homomorphism ht that depits thestruture of � on x at moment t. Sine we are abstrating from the dimensionof time we an interpret de�nition 3 as time neutral, muh in the same way thatwe an not dedue the speed of a ar from its piture. This means that we aninterpret T to be the unit temperature of the new system. The de�nition 3 forfree energy would be transformed in the following wayht(F ) = ht(U � TS) =



ht(U)� ht(T )ht(S) =ht(U)� ht(S)The other units get an interpretation along the following lines. If � is in equi-librium we expet x to be random. Aording to 5 the maximal entropy of xwould be the set of all aessible states. This is for a binary string 2jxj, whihgives log 2jxj = jxj as its maximal Boltzmann entropy. This is in line with theKolmogorov estimate of the maximum omplexity of a random string whereC(x) � jxj. Conversely if x is ompressible and there are no measurement dis-tortions we may (beause of ht) onlude with high probability that � is not inthermal equilibrium. We may see the Kolmogorov omplexity as an a priori en-tropy measure of a binary string, i.e. ht(S) = C(x). Clearly the maximal entropyof a string x is reahed when C(x) � jxj, i.e. ht(U) = jxj:ht(F ) = jxj � C(x)Note that jxj � C(x) is the randomness de�ieny of the string x. Conse-quently the Helmholz free energy U � TS of the system � is under the homo-morphism ht transformed in to the randomness de�ieny Æ(x) of x:ht(F ) = Æ(x)This onludes the proof of the theorem. If we ollet a set of adequatemeasurements of a system at time t we may say that the ompressibility or ran-domness de�ieny of the resulting data set reets the free energy of the system.If the data set is ompressible then the system ontains free energy. In that aseit is not in thermodynami equilibrium and apable of performing work. Onemight all theorem 2 the fundamental learnability theorem for physial systems.It shows how learning as data ompression and thermodynamis interat. Dataompression identi�es systems that are not in thermal equilibrium: i.e. systemswith struture, systems with self organization, living systems et.Consider the following simple example. Below we have 4 data sets. Data-set-1 is visually assoiated with a non-eqilibrium state, Data-set-2 is equivalent toan equilibrium state. The last two sets are the result of applying a 3 to 1 bithomomor�sm to these data sets.Data-set-1 Non-equilibrium: A 57x8 binary spae with 40 bits densely paked000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101011011011110000000000000000000000000000000000000000000111101110111010000000000000000000000000000000000000000000110110101111010000000000000000000000000000000000000000000100111011011100000000000000000000000000000000000000000000



Data-set-2 Equilibrium: A 57x8 binary spae with 40 bits randomly dis-tributed001000010010000000000100000000000010000000000100000000000000010100000000000000100000001000000010000000000010000000010000000000000000000000100000000000001000000000010100000000000100000000010000000001000000000000001000000000100000001000000000100000000000100000000001000000001000000001000000000000000000000000100000000000001000100000000000000100000010000000000000000000000010000000000000000000000000000000000100000000000010000010000000000100000000010010000000Data-set-1' the result of a 3 to 1 density homomor�sm00000000000000000000000000000000000000000000000000000000000000000000000000001111100000000000000111100000000000000011110000000000000000111100000000000000Data-set-2' the result of a 3 to 1 density homomor�sm00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000Figure 2 shows the e�ets of applying Rar ompression to these sets. Di-ret Rar ompression gives an inrease in size for Data-set-2 versus Data-set-1,however, after the appliation of a lossy density homomor�sm (3 bits to 1) theimage Data-set-2' is smaller then Data-set-1', i.e. the omplexity of Data-set-2 isnot preserved under simple density homomor�sms. This illustrates the fat thatphase transitions that are normally assoiated with high omplexity (in the orderof Avogadro's number) in thermodynami systems already our under simpleonditions in disrete systems and that they an be measured using state of theart ommerial data ompression routines. Given the fat that information dis-tribution funtions in our universe are of this lossy type it is to be expeted thatagents that evolve in suh an environment ignore the omplexity in equilibriumdata sets.



Fig. 2. The e�et of data ompression under density homomor�sms for very simpleequilibrium and non-equilibrium data sets (456 bytes).4 FatiityThis analysis shows that entropy and Kolmogorov omplexity not neessarilymeasure the interestingness of a system of a data set. All systems in the uni-verse will eventually reah a state of maximal entropy. A system in maximalentropy has played its part and has no interesting struture. Likewise, althougha random string x ontains in a way the maximum amount of information pos-sible for a string of length jxj, it ontains without any ontext no meaningfulinformation. We an not expet to learn very muh about a system that is ina state of thermodynami equilibrium. On the other hand a string with lowomplexity does not ontain very muh information and thus by de�nition itdoes not ontain muh meaningful information. Interestingness or meaningful-ness of a data set seems to be lying in a tension between haos and struture.As a �rst approximation of this notion I will de�ne the idea of the fatiity ofa data set. The fatiity of a binary string will be maximal if C(x) = 1=2jxj.The maximum amount of meaningful information an be measured in terms ofthe what I all the normalized fatiity of a string. It is the produt of thenormalized entropy C(x)=Cmax(x) and the normalized randomness de�ieny(Cmax(x) � C(x))=Cmax(x). For strings this is:'(x) = 4C(x)jxj � jxj � C(x)jxj (13)The fator 4 serves to seure a maximum fatiity of 1. Fatiity an be seenas a normalized information density measure. For thermodynami systems thisequation is transformed in to:



'(�) = 4 SSmax � Smax � SSmax (14)This is the rationale behind the experiment represented in �gure 1. Here I havetaken pitures of the proess of mixing blak and white paint. I use the fatiitysore to selet the most interesting piture.

Fig. 3. A tree representation based on the normalized ompression distane between12 Piano piees.The fat that state of the art data ompression routines an be used to makepreditions about data sets that seem to have ognitive relevane was reentlydisovered by Vit�anyi and Cilibrasi [9℄. Suppose that x and y are data sets andthat we have a onatenation operation on these sets that allows us to form xy.Let C be a general ompression routine suh that C(x) is the length in bits ofdata set x when ompressed by C. We an now de�ne the related NormalizedCompression Distane (NCD):NCD(x; y) = C(xy) �minfC(x); C(y)gmaxfC(x); C(y)g (15)Figure 3 shows that NCD seems to be able to identify style onnetionsbetween di�erent piano piees. NCD seems to work well for data sets that havea natural linear representation suh as musi and language. For images it seemsto work less well due to the fat that we do not have good general purposeompression algorithms for higher dimensional data sets.



Fig. 4. Example of a simple rule breaking proess that is not fati, i.e. it is not omplexenough to sustain fatiity. We start with a zero. At eah move the rule breaking routineheks the fatiity of the string using Rar ompression. If the string is too omplexthat last symbol is repeated. If the omplexity is too low the symbol of the sequene ishanged from 0 to 1 or vie versa. At the arrow this rule breaking routine ends in a loopof 01 sequenes that an easily be ompressed by Rar and thus ontinues inde�nitely.This is the fate of any reursive rule breaking routine that is not 'lever' enough tooutsmart the ompressor. Reursion is not reative.4.1 Fati proesses and fati data setsThe fatiity is optimal if the balane between order and haos is optimal. Fati-ity is partly motivated by insights from thermodynamis, but also be introduedvia other onstrutions. Fatiity an be seen as a rule breaking onept. Fun-tions that follow and break rules with some regularity reate data sets with highfatiity. Suppose we want to onstrut a binary string of k bits with maximumfatiity, i.e. C(x) = k=2. For any k of suÆient size, strings with near optimalfatiity exist in abundany: just onatenate a low omplexity string of lengthof a. k=2+ logk=2+O(1) to a random string of length a. k=2� logk=2�O(1),where the term log k=2 serves to ode the length and O(1) serves to onatenatethe �rst part to the seond part. This gives at least 2k=2�log k=2�O(1) stringswith basi near optimal fatiity and there are many more. We are interested inproesses that reate fatiity. The following de�nition is useful:De�nition 2. An inremental information reation proess is alled fati ifit maintains onstant fatiity of the total generated data set.



We all data sets with high fatiity also fati. Note that in order for a proessto be fati it must have aess to an unlimited soure of new information duringits exeution. In general, fati proesses are the result of two oniting fun-tions: one generating funtion that is an unlimited soure of new informationand a onstraining funtion that regulates the prodution of information. Notethat although fati data sets exist in abundane there is no reursive routinethat an onstrut them sine the Kolmogorov omplexity needed to judge thefaitiity sore an not be omputed (See �gure 4). Another way to say the samething is that reursive routines an not reate new information fast enough tosustain fatiity: reursion is not fati. Data sets that are fati with high prob-ability an easiliy be approximated by omputational routines that use a randomgenerator as generating funtion and a standard data ompression funtion asonstraining funtion. (See �gure 5).

Fig. 5. Example of a fati proess based on a random generator. This set was reatedin the following way. First a test run with a data set of random oinips was used toestimate Cmax, sine Rar is not an optimal ompressor for binary strings representedas bytes. As a result a base ompression fator 0.22 was hosen as a fatiity target.The string starts with 10 zero's. If the Rar omplexity is too high, the sequene isontinued with 10 versions of the last symbol. If the Rar omplexity is too low, thesequene is ontinued with 10 random seletions from f1; 0g. The resulting string is:000000000000000000000000000000000000000000000000000000000000111000000000000000000000000000000000000011000101000000000000000000000000000000011010000111111111111100100000011111111111111111111111111111110101111011111111111111111111111011000110000000000011100110000111100010000000000000000000001010000011There is an abundane of examples of fati proesses:



{ Evolutionary proesses are in general fati. Here mutation is the informationgenerating funtion and the environment that regulates survival serves as aonstraining funtion.{ A ooperative teaher (See [3℄. If we have a learning agent with limited om-putational resoures (the onstraining funtion) a ooperative teaher (thegeneration funtion) would follow a strategy of seleting simple examplesthat allow the 'pupil' to ompress the examples in to rules with relativeease. When the pupil has digested the simple examples the teaher an shiftto more omplex ones. Thus the omplexity of the examples inreases mono-tonially. The teaher will selet his examples in a narrow band betweenwhat the pupil already knows (order) and what is too omplex to proess(subjetive haos).{ Curiosity driven 'reative' agents as proposed by Shmidhuber (See [28℄).Under assumption that the general apaity to learn gives an evolutionarybene�t we expet learning agents that are the produt of evolution to havesome mehanism that drives them to selet new examples that are opti-mal given their urrent theories about the struture of their environment.Suh an explanation of the evolutionary bene�ts of uriosity seems plausi-ble. By the same token suh a uriosity driven agent should be inlined toignore any low-omplexity examples that are already proessed as boringand searh examples that 'satisfy' its uriosity. These are the examples thatthe agent will �nd 'interesting' in this stage of the learning proess. Herethe searh proess of the agent of the generating funtion and the subjetiveompression routine of the agent is the onstraining funtion. One mighteven interpret uriosity driven sienti� heuristis as an advaned variant ofsuh an evolutionary survival strategy for the human rae.5 MDL and ode optimizationLet us return to our original ambition. Given a system � we ollet a set ofmeasurements D and represent them in a string x. We are interested in an ex-planation of the struture of � and a predition of its behavior. What do theseambitions mean in the ontext of the framework that I have desribed? We se-let a suÆiently small universal Turing mahine U . 7This would be a generaluniversal mahine that does not ontain any information about x. The short-est program that produes x on U is x� = argminM2M(U(M) = x) and theKolmogorov omplexity of x relative to U is C(x) = jx�j. Note that in thisontext x� is a random string, but it is ertainly not meaningless, sine we haveU(x�) = x. In this sense x� 'explains' all of the struture of x. x� annot be om-puted, but it an be found in �nite time by means of dovetailing an enumerationof all possible omputations on U . However x� does not help us muh in termsof understanding the struture of x. This hanges if we try to ompress x in to7 Reently Alex Smith proved an intuition of Wolfram about the existene of a verysimple universal Turing mahine with 3 symbols and 2 internal states [33℄.



a so-alled two part ode. It is important to note that two part ode optimiza-tion is a spei� appliation of MDL. The majority of work on MDL is loser inspirit to the statistial than to the Kolmogorov omplexity world ([17℄). Ratherthan two-part odes, one uses general universal odes for individual sequenes;two-part odes are only a speial ase. We give the traditional formulation ofMDL [23; 6℄:De�nition 3. The MinimumDesription Length priniple: The best the-ory to explain a set of data is the one whih minimizes the sum of{ the length, in bits, of the desription of the theory and{ the length, in bits, of the data when enoded with the help of the theoryLet M 2 M be a model in a lass of models M, and let D be a data set. Theprior probability of a hypothesis or modelM is P (M). Probability of the dataD is P (D). Posterior probability of the model given the data is:P (M jD) = P (M)P (DjM)P (D)The following derivation [23℄ illustrates the well known equivalene betweenMDL and the seletion of the Maximum A posteriori hypothesis in the on-text of Shannon's information theory. Seleting the Maximum A Posteriorihypothesis(MAP): MMAP � argmaxM2M P (M jD)= argmaxM2M (P (M)P (DjM))=P (D)(sine D is onstant) � argmaxM2M (P (M)P (DjM))� argmaxM2M logP (M) + logP (DjM)� argminM2M � logP (M)� logP (DjM)where aording to Shannon � logP (M) is the length of the optimal model-ode in bits and � logP (DjM) is the length of the optimal data-to-mode-ode inbits. This implies that the model that is hosen with Bayes' rule is equal to themodel that MDL would selet:MMAP �MMDLThe formula argminM2M� logP (M)� logP (DjM) indiates that a model thatgenerates an optimal data ompression (i.e. the shortest ode) is also the bestmodel. This is true even if M does not ontain the original intended model aswas proved by [30℄. It also suggests that ompression algorithms an be usedto approximate an optimal solution in terms of suessive steps of inremental



ompression of the data set D. This is not true as was shown by Adriaans andVit�anyi[4℄. Yet this illiit use of the priniple of MDL is ommon pratie.We now turn our attention to inremental ompression. Equation 6 givesthe length of the optimal two-part-ode. The length of the two-part-ode of anintermediate model Mi is given by:�(Mi; d) = log�mid �+ C(Mi) � C(D)�O(1) (16)This equation suggests that the optimal solution for a learning problem an beapproximated using an inremental ompression approah. This is indeed whata lot of learning algorithms seem to be doing: �nd a lossy ompression of thedata set �nding regularities. This holds for suh diverse approahes as nearestneighbor searh, deision tree indution, indution of assoiation rules and neuralnetworks. There is a aveat however; Adriaans and Vit�anyi [4℄ have shown thatthe randomness de�ieny not neessarily dereases with the length of the MDLode, i.e. shorter ode does not always give smaller randomness de�ieny, e.g.a better theory. This leads to the following observations:{ The optimal ompression of a data set in terms of model and a data-to-modelode always gives the best model approximation "irrespetive of whether the'true' model is in the model lass onsidered or not" [30℄8.{ This optimal ompression annot be omputed.{ Shorter ode does not neessarily mean a better model.These observations show that the naive use of the MDL priniple is quite risky.Learning by means of inremental ompression might lead to a model that isworse then the one we started with. These observations should make us autiousabout the use of inremental ompression algorithms. Yet in the real world dataompression seems to be a reasonable indutive strategy. This amounts to thefollowing:Claim. The distributions we �nd in the world are generally benign in the sensethat time and memory bounded tests with reasonable limits for Kolmogorovomplexity are suÆient for an adequate omplexity estimate.What the memory and proessing time limits would be is a problem for an otherpaper, but a reasonable intuition would be that the limits lie well within theproessing apaity of the human brain. Another way of formulating the samepriniple is: if a system looks like it is in thermodynami equilibrium, with highprobability it is. This implies that data sets that look random but in fat arehighly strutured, like the deimal expansion of the number � are highly rare8 This is true only in this spei� omputational framework of referene. In a proba-bilisti ontext, both for Bayesian and MDL inferene, the assumption that the truemodel is in the model lass onsidered an sometimes be ruial - this also explainswhy in Vapnik-Chervonenkis type approahes, omplexity is penalized muh moreheavily than in MDL [16℄ ).



in nature. Why (and if) these data sets do not our is not ompletely lear,but a natural assumption would be that natural systems that are apable ofalulating suh rih data sets are by nature instable and therefore do not existlong enough in time.

Fig. 6. Fatiity sores for three well known works of art. Piasso's Guernia soresa maximal 1. It ontains optimal meaningful information. As was to be expeted,the blak square of Malewih has a low sore on the interestingness sale. It ontainslittle information. But also Polloks omposition No. 5 has a lower sore. In a way, itontains 'too muh' information to be interesting. Note that people always speak about'the drippings' of Pollok. Apparently it is diÆult to keep these high entropy imagesapart. The fatiity sores were alulated in the same way as in �gure 1. These worksof art typially represent the period of rises in painting in the 20th entury in whihpainters were trying to rede�ne the oneptual spae of their art.



6 Algorithmi esthetis: the dialeti of fatiityReently Shmidhuber de�ned a notion of 'interestingness' in a paper with therather ambitious title "Simple Algorithmi Priniples of Disovery, Subjetivebeauty, Seletive Attention, Curiosity & Creativity" [28℄. Sine there is a relationwith the notion of fatiity it is useful to present a ritial disussion of theseideas. Although I am ritial of Shidhuber's theories, at least we seem to agreeon one point: algorithmi information theory is a useful formalism to evaluateestheti theories. Indeed, as we saw in the previous paragraphs, uriosity drivenagents tend to produe fati data sets. But it seems not right to equate thenotion of 'interestingness' that an be de�ned for these agents with beauty.As an algorithmi esthetis Shmidhubers oneption is not satisfatory. In thefollowing I will argue that the notion of subjetive ompressibility in art is muhmore omplex than Shmidhuber assumes. In partiular great works of art seemto be a rih soure of meaning beause of the fat that they transend ourrationality (i.e. they have high fatiity in themselves and an not be ompressed)and not beause they have low omplexity. Beauty is not an evolutionary onept.Artist do not try to onstrut simple didati objets, they try to onstrutobjets that are as rih in meaning as possible, i.e. they try to optimize fatiity.At �rst sight the idea of low omplexity art seems to �t niely with somepredominant themes of western philosophy dating bak to anient Greek thought:1) the Platoni identi�ation of beauty and truth and 2) the identi�ation oftruth with simpliity. In various soures from antiquity we �nd the notion thattruth and beauty an be reahed through a proess of 'idealization' removing allthe errors and faults from a olletion of similar objets.9 The fat that thereare philosophers that defend those ideas does not imply that they desribe whatartists atually do. Figure 7 shows that the reality is muh more omplex. Artistsertainly use ompression, but not in suh a way that beauty an in general beidenti�ed with low-omplexity. The following variants seem to our:{ Realism: the representation is isomorphi to the data.{ Idealization: ideal shemas optimally ompress the desription of a set ofexamples with errors.{ Shematization: optimal ompression under bounded omplexity.{ Charaterization: optimal bounded ompression of an individual exampleonditional to the optimal general theory.What is more, all these variants our side by side throughout history. Thereis no development from simple to more omplex art as would be predited byShmidhuber's theory. Espeially Plato's identi�ation of truth and beauty that�ts so niely with the onept of a uriosity driven notion of evolutionary beautyshould be regarded with suspiion. In the end artists were banned from Plato'sideal state. Artists do not follow rules, they break them.9 See e.g. Xenophon, Memorabilia III. This atually shows that the notion of dataompression as a proess of idealization that approximates some form of truth ismuh older than Oam. MDL as a sienti� methodology has its roots in Greekthought.



Fig. 7. An illustration of the omplex relation between data ompression and idealiza-tion in art. The eigenfae shows that a proess of data ompression in to a general idealform is an element of a ertain artisti tradition. At the same time extreme realism(very little ompression) and shematization (extreme ompression) exist. Note thatthe portrait in the upper left is from Fayoum. It shows that individual portraits alreadyoured in antiquity, illustrating the a-historial harater of this form of realism. Theidea that beauty has a relation with low-omplexity and that the history of art showsan evolution to objets of inreasing omplexity is simply denied by the fats. Theautomatially onstruted eigen fae is due to Luis Ja~nez Esalada and Miguel AngelCastellanos of the University of Madrid.The world of art and siene have di�erent rhetorial models. An artist om-muniates diretly with his audiene through his produts. De gustibus non estdisputandum. A work of art either fasinates and moves us, or it does not. Nosienti� argumentation or theoretial explanation an hange this, although ofourse one an train ones sensitivity for the quality of art. There is a onsensusamongst most art ritis and artists that estheti judgements are not verbal. Ifthe essential quality of a work of art ould be desribed adequately in languagethen the work of art would be nothing but an illustration of the text, and thusstop to be an independent work of art. One an say that a work of art is 'good'or 'beautiful' but this verbal judgement only serves as a reommendation andnot as an explanation. The beauty of a work of art 'shows' itself in the sense ofWittgenstein's Tratatus. A beautiful objet is a onstant soure of pleasure thatde�es explanantion. From this perspetive any attempt to formulate a sienti�theory explaining what beauty is or presribing what human beings should orwould �nd beautiful is doomed to fail. Books and theories by authors like Hof-stadter, Boden, Sha, Ramahandran [25℄ and Shmidhuber [28℄ all present uswith hypothetial models of the human mind and then try to de�ne beauty or



reativity in terms of these models. Suh an exerise may give us deep insights,it does not hange the fat that beauty transends the tools of siene.First of all I observe that we as agents live in a world that is not ompletelytransparent for us. We know that we an inuene our environment, but thisdoes not imply that we wholly understand the proesses that are involved. Wean prepare food without a full understanding of the underlying biologial andhemial proesses. We an make hildren without a grasp of the mirale of life.By the same token artists reate art objets without an intelletual understand-ing of the reative proess involved. An intelletual onsious deision to makeart seldom leads to anything of interest. This is in onit with the view of theartist as a low-omplexity teaher that is one step ahead of his audiene and inline with the view that a real objet of art transends verbal analysis.Seondly, art does not seem to evolve from lower to higher forms of om-plexity in the way Shmidhuber's theory predits. On the ontrary, as soon asertain oneptual spaes are opening up, we see that artists immediately explorethe maximal extension of the artisti possibilities. Homer's Iliad and Odysseyare not boring low omplexity books from the beginning of literature, but epistories that have fasinated people for enturies and that funtion as inspira-tional examples for ontemporary authors. At the same time the existene ofthe Homer's works does not keep writers from oming up with new ideas. Thereis spae enough for new stories and plots. Painting in antiquity was ertainlynot of lower quality than anything that has been done sine the Renaissane.The same holds for poetry: Sappho is not a low omplexity preursor of Shake-speare's sonnets. Objets in history that were reated in the early history of artfrequently seem to have a deeper meaning then anything that follows.On the other hand, it annot be denied that some forms of art know ahistorial development. Abstrat painting seems partly to be a reation to theinvention of photography foring painters to rede�ne the oneptual spae oftheir art (See �gure 6). The development of western musi is one of inreasinglyrih harmoni possibilities. But then again, the invention of the 12-tone tehniqueby Sh�onberg does not make the works of Mozart less beautiful, just as theemergene of abstrat painting takes anything away from the fasination of apainting by Raphael. A theory that explains these phenomena is the one thatstates that artists try to maximize meaning in a historial ontext. A good workof art immediately onquers the full possibilities of the oneptual spae in whihit emerges (See �gure 8). As suh its full importane an not be appreiatedompletely by both the artist and the audiene at the time of its oneption.This theory implies that artists work in a oneptual spae in whih they try tooptimize meaning (i.e. fatiity) right from the start. There is no developmentform simple to more omplex. However dynami development of art is driven bythe fat that any �nite oneptual spae an be exhausted. If this happens, thepossibilities for artisti development are gone, and if the oneptual spae is notrede�ned the art form dies.Claim. Good art maximizes onditional fatiity in a oneptual spae that de-velops historially.



Here is an abstrat desription of suh a proess. Consider a ommunity ofagents with a general bounded algorithmi ompression routine C and somefati reation routine R. The oneptual spae for 'works of art' is the set ofbinary strings of length k. The history ht at time t of this ommunity onsistsof sequential individual proposals of works of art r1; r2:::; rt. A work of art rt+1is onsidered to be 'good' if:{ It is meaningful : It has optimal fatiity aording to equation 13 using Cas ompression routine.{ It is original : The normalized ompression distane NCD of rt+1 to any ofthe elements of the history r1; r2:::; rt using C as ompression routine is atleast  where 0�  � 1.It is lear that suh a ombination of demands leads to an interesting non-lineardynamis within this history. Consider the beginning of the proess. The �rstagent makes a proposal r1 and sueeds in maximizing the fatiity of this objet.This �rst objet of art rt onsequently strutures the rest of the development.Any new objet has to stay away from r1. As soon as a proposed string has a lownormalized ompression distane to r1 it is onsidered to be plagiarism. A seondobjet r2 again onquers part of the oneptual spae away from the region takenby r1. If the proess ontinues after some time it beome impossible to seletompletely original objets with high fatiity. At this moment the prodution oforiginal meaningful objets of art beomes impossible. Supposing that the agentsstill have an interest in the reation of art, a possible solution is the expansionof the oneptual spae, i.e. inrease k to k0. Note however that if this happensit remains still impossible to de�ne new meaningful objets of a length < k.7 Conlusions and further workIn this paper I studied the notion of meaningful information. I showed that thisnotion is intriately onneted with the idea of learning by ompression. I intro-dued the onept of fatiity as a �rst approximation of meaningful information.I studied data ompression in the ontext of thermodynamis and I showed thatunder adequate measurement onditions the randomness de�ieny of a data setis assoiated with the free energy in the data set.I also studied two-part ode optimization. Here I analyzed ompression algo-rithms that separate a data set in a strutural and an ad ho part. In this waythe system is redued to a typial element of a model and thus the model de-sription has a high probability to produe an adequate predition of any futuredevelopment of the system.Note that systems in thermodynamial equilibrium have no signi�ant de-velopment in time. Reduing the desription of these systems to random twopart-odes ompresses the desription of the system to those elements that aretime invariant. That is why suh desriptions an be used to predit the futureof the system.



Fig. 8. Left, a piture of a regular shemati feminine fae due to Shmidhuber [26℄.In the middle, a detail of a opy of the Mona Lisa by Leonardo's untalented proteg�eSalai. On the right a sheme for a hilds head based on an arrangement of four irlesin a square due to Fioletti (1608). The last image shows that onstrution of faesaording to simple geometrial shemes was an element of artistial training in theRenaissane. It is lear from the plain look of Salai's painting, whih onveys nothingof the fasination of the original, that great works of art are diÆult to opy, i.e. theyhave a meaning that an not be aptured by simple geometrial shemas. This supportsthe view that great works of art optimize fatiity and an not be ompressed in tolow-omplexity data sets.There are a number of ways in whih this researh ould be expanded. Firstlythere is the issue of developing good omplexity estimates for spei� problemlasses, so that MDL approahes an be used. I have given initial reports for DFAindution but muh improvement is possible [1℄. Another diretion of researhis a deeper analysis of the distributions that I suppose are essential for ourapabilities to analyze the world around us. Another interesting exerise ouldbe a further embedding of these insights in the history of philosophy.Interestingly the laims of the role of fatiity in art I have defended hereseem to be open for empirial testing (and thus to plain Popperian falsi�ation).This is due to the fat that Cilibrasi's Normal Compression Distane seemsto measure ognitive relevant aspets of musi represented as midi �les. Theneed felt by omposers to streh the limits of onsonany and ounterpoint at aertain point in history, should be measurable as an impossibility to ome up withinteresting original melodies given enough Midi representations of melodies up tothat moment. Seondly, given the urrent status of fMRI tehnology it is possibleto present melodies with various variantions in omplexity and fatiity and tostudy invariants in representation in the brain. Normal ompression distaneseems not to be able to measure ognitive relevant aspet of images but at thismoment omparable fMRI and PET-san studies are done measuring the brain'sreation to images with various Weibull and non-Weibull distributions that havea relation with fatiity.[15℄ Even if the reation of real art will remain a miralefor ever we are bound to get a muh deeper insight in the 'innate' probabilitydistributions that our brain uses to analyse and predit the world around us.
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