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t. The notion of meaningful information seems to be asso
iatedwith the sweet spot between order and 
haos. This form of meaningful-ness of information, whi
h is primarily what s
ien
e is interested in, isnot 
aptured by both Shannon information and Kolmogorov 
omplex-ity. In this paper I develop a theoreti
al framework that 
an be seenas a �rst approximation to a study of meaningful information. In this
ontext I introdu
e the notion of fa
ti
ity of a data set. I dis
uss therelation between thermodynami
s and algorithmi
 
omplexity theory inthe 
ontext of this problem. I prove that, under adequate measurement
onditions, the free energy of a system in the world is asso
iated with therandomness de�
ien
y of a data set with observations about this system.These insights suggest an explanation of the eÆ
ien
y of human intelli-gen
e in terms of helpful distributions. Finally I give a 
riti
al dis
ussionof S
hmidhuber's views spe
i�
ally his notion of low 
omplexity art, Idefend the view that artists optimize fa
ti
ity instead.keywords: meaningful information, learning as 
ompression, MDL, two-part 
odeoptimization, randomness de�
ien
y, thermodynami
s, free energy, algorithmi
estheti
s.1 Introdu
tion: Learning, 
ompression and meaningfulinformationSin
e pre-so
rati
 philosophy there has been a tension between a des
ription ofthe world as a dynami
 pro
ess (Hera
litus) or as a stati
 stru
ture (Parmenides).Plato's theory of ideas explains the 
haoti
 
omplexity of the world around usin terms of an imperfe
t re
e
tion of perfe
t immutable ideal forms. We 
anknow and understand the world be
ause our mind parti
ipates in this world of? This proje
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ideas. Learning to understand the world is in fa
t a kind of remembering whatone already knows. Later philosophers like William of O

am threw the worldof ideas in the dustbin ("entia non sunt multipli
ands praetor ne
essitated", or"entities should not be multiplied beyond ne
essity") in favor of the nominalisti
view that our des
riptions of the world should be as simple as possible. Thisprin
iple, often referred to as O

am's razor (to 
ut o� Plato's beard of ideas),has had a de
isive in
uen
e in the history of s
ien
e. In modern methodologyof s
ien
e this notion is studied under various guises: O

am's razor [15℄, theminimal des
ription length (MDL) prin
iple [6; 17℄, two-part-
ode optimization[31℄, learning as data 
ompression [33℄ et
. All these approa
hes are indebtedto the formulation of an algorithmi
 solution to the problem of indu
tion bySolomono� [30℄, Chaitin [7℄ and Kolmogorov [32℄, whi
h is one of the greatera
hievements of s
ien
e in the 20th 
entury.In its modern guise this resear
h often goes hand in hand with a 
omputation-alisti
 
on
eption of the human mind as a kind of general problem solver. This
on
eption 
an, via the in
uen
e of Carnap, also be tra
ed ba
k to the empiri
istpsy
hology of the mind of Lo
ke and Hume [21; 19℄. Solomono�'s solution to theindu
tion problem is asso
iated with the 
on
ept of Kolmogorov 
omplexity asa measure of the amount of information in a binary obje
t. Roughly the Kol-mogorov 
omplexity of a binary string is the length of the shortest pre�x-freeprogram that 
omputes this obje
t on a universal Turing ma
hine. This insightallows us to formulate the notion of a universal distribution that assigns an a-priori probability to an obje
t that is inversely logarithmi
 in its Kolmogorov
omplexity. Espe
ially Solomono�, who was the �rst to formulate the idea of auniversal distribution, seems to have been driven by an ambition to solve thegeneral problem of mathemati
al indu
tion on one hand and formulate a generaltheory of optimal human learning based on evolution on the other: My general
on
lusion was that Bayes' theorem was likely to be the key. That a person wasborn with a reasonably good builtin a priori probability distribution. The per-son would then make predi
tions and de
isions based on this distribution. Thedistribution was then modi�ed by their life experien
e. The initial "Builtin"distribution was obtained by organi
 evolution. There was a strong sele
tion infavor of organisms that made de
isions on the basis of "good" a priori probabil-ity distributions. The organisms making poor de
isions would tend to have fewerdes
endants. [30℄ This resear
h program seems to be the driving for
e behindthe work of resear
hers like S
hmidhuber [28℄ and Hutter [20℄. For a dis
ussionof 
ompressibility as a general 
ognitive prin
iple see [8℄.O

am's razor has been questioned throughout history with �er
e opponents(e.g. [15℄) and strong defenders (e.g. [33℄). Until re
ently the view of learning asalgorithmi
 data 
ompression did not seem to have mu
h pra
ti
al value. Lotsof learning algorithms in fa
t perform some kind of data 
ompression, but thiswas not a guiding prin
iple of their design [24; 13℄. Two developments in the last�ve years have 
hanged this perspe
tive quite fundamentally : 1) a better un-derstanding of the mathemati
s behind 
ompression, spe
i�
ally Kolmogorovsstru
ture fun
tion [31; 32℄ and 2) the appli
ation of existing implementations



of 
ompression algorithms to approximate the ideal (and un
omputable) Kol-mogorov 
omplexity as pioneered by Cilibrasi and Vit�anyi [9; 10℄.1.1 A thermodynami
 interpretation of Solomono�'s programAt this moment we have not only a mu
h better understanding of the theoreti
alissues behind data 
ompression. It has also be
ome 
lear that MDL as a uni-versal indu
tive methodology has 
aws. Gr�unwald and Langford have identi�ed
onditions under whi
h MDL behaves suboptimal [17℄. Adriaans and Vit�anyishowed that, although an optimal 
ompression of a data set produ
es in a 
er-tain sense an optimal theory, this does not imply that in
remental 
ompressionof data sets, su
h as most learning algorithms perform, is a generally valid strat-egy [4℄. The quality of our predi
itive models may vary inde�nitely with ea
hin
remental 
ompression step we make. Be
ause of the un
omputatibility of theoptimal 
ompression we 
an never be sure to have rea
hed a good theory in any�nite time. In a purely algorithmi
 universe MDL a
tually would not be a verygood strategy. The fa
t that bounded resour
e data 
ompression 'works' in ouruniverse has to do with its spe
i�
 physi
al stru
ture. Consequently there 
annot be a pure algorithmi
 explanation of the validity of MDL. The extremelyeÆ
ient data 
ompression that the human mind is able to perform seems to bedriven by bias that are not purely mathemati
al. In this 
ontext the 'built-in'a priori distribution that was referred to in the 
itation of Solomono� above
ould be updated in our theoreti
al models along the following lines: "We areintelligent agents that have evolved via a pro
ess of evolution in a universe thathas the following stru
ture:1. It is spatio temporal.2. It is subje
t to elementary physi
al laws. In parti
ular it obeys the laws ofthermodynami
s. It has an irreversible arrow of time that is asso
iated witha 
ontinuous in
rease in entropy.3. It supports the spontaneous emergen
e of universal 
omputational pro
esses[34℄. Sin
e the 
apa
ity to store information presupposes the existen
e ofreversible pro
esses (bit-
ips) and sin
e re
ursive fun
tions dis
ard informa-tion, this implies that it 
ontains systems that 
an sustain thermodynami
non-equilibrium states during a 
ertain time.4. It supports various fun
tions for the distribution of information throughspa
e: light (vision), me
hani
al intera
tion (tou
h, hearing) and 
hemi
alintera
tion (smell, taste). These information distribution fun
tions a
t as'lossy' homomorphisms that only 
onvey partial information. In general theinformation de
ays at least polynomially with the distan
e in spa
e.In the 
ontext of evolution we may expe
t our sensory organs and generalproblem solving 
apabilities to be optimized for these 
onditions. In parti
ularone would expe
t agents emerging in these 
onditions to have advan
ed 
apabili-ties to evaluate spatial variations in entropy. Sin
e systems in
rease their entropyover time, pla
es with low entropy are naturally 'interesting' and may 
reate life



sustaining 
onditions. Also the fa
t that su
h agents 
ould emerge in an evolu-tionary pro
ess presupposes the environment to be benign in the following sense:the lossy information distribution fun
tions 
onvey enough information to sur-vive. This implies that dete
tion of entropy variations that are preserved underlossy 
ompression (i.e. general dete
tion of density variations) is suÆ
ient forsurvival.1This thermodynami
 variant of Solomono�'s program moves us away from amore radi
al interpretation of his work implying a 
omputationalisti
 view of theworld, i.e. the metaphysi
al theory that the world essentially is a 
omputationalpro
ess and that the human mind is a universal 
omputer. The 
onne
tion isas follows: the appli
ation of the universal distribution to a data set seems toimply that we regard this data set as the result of a 
omputational pro
ess. Ifwe interpret the human mind as a general problem solving devi
e that is the re-sult of an evolutionary pro
ess then it is natural to suppose that it is optimizedfor data sets that are produ
ed by 
omputational pro
esses, i.e. it evolved in aworld that is itself 
omputational. Computationalisti
 ideas have been defendedby a variety of authors like Wolfram [34℄, S
hmidhuber, Lloyd [23℄, Floridi andZuse: "The entire universe is being 
omputed on a 
omputer, possibly a 
ellularautomaton."2 It is 
lear that this form of 
omputationalism is a purely meta-physi
al position whi
h 
an not be veri�ed at best, but whi
h prima fa
ie isat varian
e with plain observations we 
an make in everyday life: e.g. althoughthe laws of gravity 
an be des
ribed in terms of simple mathemati
al regulari-ties there is nothing that suggests that gravity is itself a 
omputational pro
ess.Metaphysi
al 
omputationalism therefore should be reje
ted as uns
ienti�
. Fur-thermore, given the 
aws of MDL dis
ussed above, it is diÆ
ult to defend theidea that the human mind evolved as a purely algorithmi
 
ompression basedproblem solver.The reje
tion of 
omputationalism implies a view of 
omputational modelsof pro
esses in the world as phenomenologi
al : i.e. they des
ribe pro
esses inthe world without any presupposition about their ontologi
al status. An ex-planation of the fa
t that the world at di�erent levels of aggregation and overdi�erent phase transitions 
an be des
ribed by simple high level mathemati
alequations remains one of the great 
hallenges of s
ien
e. Assuming that the worldis essentially a 
omputational pro
ess will not bring this issue any 
loser to asolution.1 This last 
ondition seems to rule out exa
tly those data sets that given the resultsof Adriaans and Vitanyi [4℄ 
ould bring a general 
ompression based bounded prob-lem solver in to trouble. It is a well known prin
iple in information theory that ifa set of messages has systemati
 density variations it does not have maximal en-tropy. An environment is benign if the opposite 
ondition also holds: If a data set is
ompressible it has density variations. This 
ondition rules out the mali
ious demonthat presents data sets that are apparently random, but in fa
t 
an be 
ompressedsubstantially, e.g. de
imal expansions of the number �. Su
h data sets indeed seemto be suÆ
iently rare in our universe su
h that a failure to re
ognize them in generaldoes not 
reate life threatening risks. Of 
ourse they still do o

ur in nature.2 Konrad Zuse, as he referred to this as "Re
hnender Raum (Zuse 1967, 1982).



1.2 Meaningful informationThere is a 
onne
tion with the notion of meaningful information. Formal de�ni-tions of information like those of Shannon and Kolmogorov do measure informa-tion in data sets but they do not 
apture the notion of meaningful information.This is immediately 
lear when we note that the most information ri
h radiotransmission we 
ould send is pure noise. Any station following this strategywould soon loose its audien
e. Data sets with maximum entropy are not 
on-sidered to be interesting by human beings: su
h sets are ri
h in information butthey 
ontain no meaningful information. On the other hand a transmission ofpure silen
e would also not be 
onsidered to be very informative. They 
ontainno information at all. Meaningful information seems to exist in the 'sweet spot'between order and 
haos.In this paper I asso
iate meaningfulness with fa
ti
ity, but this is no doubtonly a 
rude approximation. In general s
ien
e, in the study of human 
ognitionand even in art we seem to have an interest in systems that have a 
omplex-ity between order and 
haos, between boredom and noise. The 'interestingness'of these data sets is related to 
ompressibility ([12℄, [14℄). The thermodynami
explanation for this seems to be the fa
t that, in a universe in whi
h entropy nat-urally in
reases over time, systems that maintain a low entropy over a period oftime are 'by de�nition' interesting. Compressibility is asso
iated with stru
ture,with self-organization and with the prin
iples of life itself.It is important to distinguish this question from the related ambition of re-sear
hers that are interested in formulating a theory of optimal learners basedon Kolmogorov 
omplexity. S
hmidhuber even has formulated a theory of al-gorithmi
 aestheti
s and low 
omplexity art along these lines [27℄. Re
ently heintrodu
ed a notion of interestingness as the �rst derivative of subje
tive 
om-pressibility [29℄. This theory deals with a subje
tive notion of interestingness ata 
ertain time for a 
ertain agent. Fa
ti
ity on the other hand is an a prioriquality of data sets, i.e. produ
ts of the human mind. As su
h it leads to pre-di
tions that 
an in prin
iple be veri�ed empiri
ally given the present state ofte
hnology. Sin
e I am also interested in a theory of algorithmi
 estheti
s I willpresent a 
riti
al dis
ussion of the ideas of S
hmidhuber in a separate paragraphat the end of this paper.3In the 
ontext of this paper I am not so mu
h interested in the de�nition ofan optimal problem solver but in the question why the universe produ
es datasets from whi
h anything 
an be learned at all. Why does the universe a
t as a
ooperative tea
her? Why do we live in a universe in whi
h MDL is a valuablemethodologi
al prin
iple? The reason for this shift in dire
tion is the insightthat the study of algorithmi
 strategies for problem solving, as su
h, do not ex-plain the eÆ
ien
y with whi
h we solve problems. Theories about algorithmi
allyoptimal problems solvers give an interesting framework for the trans
endentalanalysis of learning but in order to explain the eÆ
ien
y of learning an analysisof additional bias is ne
essary. This paper does a �rst step in this dire
tion by3 The ideas on a diale
ti
s of fa
ti
ity and art were presented in my Paradiso le
tureat the beginning of 2007.



analyzing bias that stem from thermodynami
s. This shift is not in 
on
i
t withSolomono�'s resear
h program but more or less orthogonal to it. Surprisingly,from a philosophi
al point of view, this 
hange of dire
tion is asso
iated with ashift from an empiri
ist tabula rasa position to a more Cartesian/Kantian viewin whi
h a learning agent shares bias with the world in whi
h it is embedded.This should be interpreted not so mu
h as innate ideas, but as the theory that anagent inherits distributions from the world from whi
h it originates. This is fully
ompatible with the observation 
ited above of Solomono� that human beingsare: "born with a reasonably good builtin a priori probability distribution."

Fig. 1. Fa
ti
ity s
ores for mixing bla
k and white paint. For a deeper dis
ussion seeparagraph 4. The fa
ti
ity of a data x is the produ
t (times 4) of the normalized entropyC(x)=Cmax(x) and the normalized randomness de�
ien
y (Cmax(x)�C(x))=Cmax(x).Con�guration 4 has the best balan
e between order and 
haos and thus would bethe most 'interesting' one. The s
ores have been 
al
ulated using JPEG, followed byRAR 
ompression. Maximal entropy Cmax(x) has been approximated by adding 400 %noise to the images. The standard entropy C(x) is approximated by the �le size after
ompression. Note that the resolution of the 
amera in
uen
es the measurements. Theaddition of hard pixel noise 
reates a random image that the 
amera never 
ould
apture. This is the reason that none of the pi
tures rea
h the maximal fa
ti
ity of 1.



2 Learning and Thermodynami
sHere is an experiment. Take a 
up of 
o�ee and pour some 
ream in it (SeeFigure 1). Take a pi
ture of it with your digital 
amera. In the beginning the
ream will be just an uninteresting blob. Stir slowly and make pi
tures of variousstages that have ni
e patterns. Continue until the 
ream has dissolved and your
up has an even brown 
olor. Drink the 
o�ee, then look at the �le size of thedi�erent pi
tures.If your 
amera uses an adequate 
ompression algorithm you will �nd that the�le size has in
reased up to a 
ertain point and then de
reases. The 
ompressionalgorithm of your 
amera re
e
ts the 
omplexity of the data set until the momentthat the 
omplexity has rea
hed a global equilibrium and is beyond its resolution.In this experiment we have a system that evolves in time, the 
up of 
o�ee, and adata set of observations, the pi
tures. The 
rux of this experiment is that the sizeof the individual pi
tures somehow re
e
ts the 'interestingness' of the system. Inthe beginning there is a lot of order in the system. This is not very interesting.In the end there is an equilibrium that also has little 
ognitive appeal. Below Iwill propose a theory to make these ideas more pre
ise.Let us rede�ne the problem of learning as a general problem of indu
tion.Suppose we study some universe � that 
ontains a 
ertain system �. In prin
iple� 
ould be anything: the human brain, the living 
ell, a bla
k hole, the weather.For the moment we will suppose that � is an isolated physi
al system that existsin spa
e and time. The problem of indu
tion now takes the following form: 
an wedevelop a des
ription of � that: 1) explains its stru
ture 2) predi
ts its behavior?Behind these issues there is still a deeper problem. Note that by denoting S asa system we have already made a hermeneuti
 jump. By 
onsidering � as asystem we have de
ided that it is interesting. The question is: 
an we give aformal des
ription of this notion of interestingness. This last question 
annot beanswered by means of an analysis of the formal 
omplexity of � alone. In orderto understand these questions we must look at the physi
al ba
kground andspe
i�
ally at the theory of thermodynami
s 4. The �rst law of thermodynami
sdes
ribes the 
hange of internal energy U of a system in terms of the di�eren
ebetween the amount of heat Q absorbed by the system and the amount of workW done by the system: dU = �!d Q��!d W (1)The se
ond law of thermodynami
s states that a 
hange of entropy of any systemis dire
tly related to a 
hange in the amount of heat absorbed by the system,and inversely related to the absolute temperature T . Moreover the entropy neverde
reases in time: dS = �!d QT ; dSdt � 0: (2)An important notion for our resear
h is that of free energy :F � U � TS (3)4 For a dis
ussion of the relation between physi
s and information see [5℄



The free energy is asso
iated with the amount of energy in the system that isfree to do work. If a system is in a state of thermal equilibrium then the freeenergy is minimal and the entropy is maximal. In a gas the total entropy inequilibrium is given by: S = �Xi pi log pi (4)where pi are the individual probabilities of the velo
ities of the parti
les. In thelimiting 
ase where all probabilities are equal pi = p = 1=w we get:S = lnw: (5)This is the formula that Boltzmann had engraved on his tombstone. It tells usthat in a state of maximal equilibrium the entropy is the log of the number ofa

essible states.What should we 
on
lude from these de�nitions in the 
ontext of learning?Note that for a 
losed system in thermodynami
 equilibrium ma
ros
opi
allymeasurable quantities do not vary over time. This means that there is very littlethat we 
an learn about a system in thermodynami
 equilibrium. Su
h systemsdo not have an internal stru
ture and they do not have an interesting history.Consequently learnability is asso
iated with non-equilibrium states of systems.Here is one possible obje
tive answer to the question what distinguishes a sys-tem from its environment. Separate systems are those parts of the world thatmaintain en entropy that is di�erent from their environment during a 
ertainperiod of time. Consequently learnable systems are asso
iated with variationin entropy. This implies no maximal entropy and thus an amount of free en-ergy larger than zero. Self-organization is typi
ally asso
iated with systems thatmaintain an entropy that is di�erent from the environment for a 
ertain periodof time. A world that is in a state of thermal equilibrium does not 
ontain anymeaningful information, has no stru
ture, no interesting development and nofree energy.3 Kolmogorov 
omplexityNow we turn our attention to Kolmogorov 
omplexity as a theory about optimal
omplexity of data sets. Let x; y; z 2 N , where N denotes the natural numbersand we identify N and f0; 1g� a

ording to the 
orresponden
e(0; �); (1; 0); (2; 1); (3; 00); (4; 01); : : :Here � denotes the empty word. The length jxj of x is the number of bits in thebinary string x, not to be 
onfused with the 
ardinality jSj of a �nite set S. Forexample, j010j = 3 and j�j = 0, while jf0; 1gnj = 2n and j;j = 0. The emphasis ison binary sequen
es only for 
onvenien
e; observations in any alphabet 
an been
oded in a `theory neutral' way. Below we will use the natural numbers andthe binary strings inter
hangeably. In the rest of the paper we will interpret theset of models M in the following way:



De�nition 1. Given the 
orresponden
e between natural numbers and binarystrings,M 
onsists of an enumeration of all possible self-delimiting programs fora presele
ted arbitrary universal Turing ma
hine U .5 Let x be an arbitrary bitstring. The shortest program that produ
es x on U is x� = argminM2M(U(M) =x) and the Kolmogorov 
omplexity of x is C(x) = jx�j. The 
onditional Kol-mogorov 
omplexity of a string x given a string y is C(xjy), this 
an be inter-preted as the length of a program for x given input y. A string is de�ned to berandom if C(x) � jxj.This makesM one of the most general model 
lasses with a number of verydesirable properties: it is universal sin
e all possible programs are enumerated,be
ause the programs are self-delimiting we 
an 
on
atenate programs at will,in order to 
reate 
omplex obje
ts out of simple ones we 
an de�ne an a-priori
omplexity and probability for binary strings. There are also some less desirableproperties: C(x) 
annot be 
omputed (but it 
an be approximated) and C(x) isasymptoti
, i.e. sin
e it is de�ned relative to an arbitrary Turing ma
hine U itmakes less sense for obje
ts of a size that is 
lose to the size of the de�nition ofU . Details 
an be 
he
ked in [32℄.In this paper I will often use the notions of typi
ality and in
ompressibilityof elements of a set, e.g. in those 
ases where I state that the vast majority ofelements of a set have a 
ertain quality. This might at �rst sight sound a bitina

urate. To show that this notion a
tually has an exa
t de�nition I give thefollowing theorem (without proof) due to Li and Vit�anyi [32℄ pg. 109):Theorem 1. Let 
 be a positive integer. For ea
h �xed y, every �nite set A of
ardinality m has at least m(1� 2�
) + 1 elements x with C(xjy) � logm� 
.This shows that in the limit the number of elements of a set that have lowKolmogorov 
omplexity is a vanishing fra
tion. In the limit a typi
al element ofa set is a random element. In general the vast majority of elements of a set isnot 
ompressible. One of the problems with Kolmogorov 
omplexity is that itspe
i�es the length of a program but tells us nothing about the time 
omplexityof the 
omputation involved.3.1 Randomness de�
ien
y and minimum des
ription lengthIt is important to note that obje
ts that are non-random are very rare. To makethis more spe
i�
: in the limit the density of 
ompressible strings x in the setf0; 1g�k for whi
h we have C(x) < jxj is zero [32℄. The overwhelming majorityof strings is random. In di�erent words: an element is typi
al for a data set ifand only if it is random in this data set. In yet di�erent words: if it has maximalentropy in the data set. This insight allows us to formulate a theory independentmeasure for the quality of models: randomness de�
ien
y.5 Here the notational 
onventions of two dis
iplines 
lash. U is the internal energy ofa system U(x) is the Universal Turing ma
hine with input x. Whi
h interpretationis meant should be 
lear from the 
ontext.



We start by giving some estimates for upper-bounds of 
onditional 
omplex-ity. Let x 2M be a string in a �nite set M thenC(xjM) � log jM j+O(1) (6)i.e. if we know the set M then we only have to spe
ify an index of size log jM jto identify x in M . Consequently:C(x) � C(M) + log jM j+O(1) (7)The fa
torO(1) is needed for additional information to re
onstru
t x fromM andthe index. Its importan
e is thus limited for larger data sets. These de�nitionsmotivate the famous Kolmogorov stru
ture fun
tion:hx(�) = minS flog jSj : x 2 S;C(S) � �g (8)Here � limits the 
omplexity of the model 
lass S that we 
onstru
t in orderto 'explain' an obje
t x that is identi�ed by an index in S. 6 Let D � M be asubset of a �nite model M . We spe
ify d = jDj and m = jM j. Now we have:C(DjM;d) � log�md�+O(1) (9)Here the term �md � spe
i�es the size of the 
lass of possible sele
tions of d elementsout of a set of m elements. The term log �md � gives the length of an index for thisset. If we know M and d then this index allows us to re
onstru
t D.A 
ru
ial insight is that the inequalities 6 and 9 be
ome '
lose' to equalitieswhen respe
tively x and D are typi
al for M , i.e. when they are random in M .This typi
ality 
an be interpreted as a measure for the goodness of �t of themodel M . A model M for a data set D is optimal if D is random in M , i.e. therandomness de�
ien
y of D inM is minimal. The following de�nitions formulatethis intuition. The randomness de�
ien
y of D in M is de�ned by:Æ(DjM;d) = log�md�� C(DjM;d); (10)for D � M , and 1 otherwise. If the randomness de�
ien
y is 
lose to 0, thenthere are no simple spe
ial properties that single D out from the majority ofdata samples to be drawn from M .The minimal randomness de�
ien
y fun
tion is�x(�) = �D(�) = minM fÆ(DjM) : M � D; C(M) � �g; (11)If the randomness de�
ien
y is minimal then the data set is typi
al for thetheory and, with high probability, future data sets will share the same 
hara
ter-isti
s, i.e. minimal randomness de�
ien
y is also a good measure for the futureperforman
e of models. For a formal proof of this intuition, see [31℄.6 This � 
ould be seen as a fa
tor that limits the resolution of the 
amera in �gure 1.



Kolmogorov 
omplexity thus is useful in the 
ontext of the so
alled MinimumDes
ription Length Prin
iple (MDL). We give the traditional formulation ofMDL [24; 6℄:De�nition 2. The MinimumDes
ription Length prin
iple: The best the-ory to explain a set of data is the one whi
h minimizes the sum of{ the length, in bits, of the des
ription of the theory and{ the length, in bits, of the data when en
oded with the help of the theoryIf D is a data set then the 'best' model MMDL to explain D is given by:argminM2M � logP (M)� logP (DjM) =argminM2MC(M) + C(DjM) =MMDL (12)Under this interpretation of M, the length of the optimal 
ode for an obje
tis equivalent to its Kolmogorov 
omplexity. This spe
i�
 formulation is alsoknown as two-part 
ode optimization. It is important to note that two part
ode optimization is a spe
i�
 appli
ation of MDL. The majority of work onMDL is 
loser in spirit to the statisti
al than to the Kolmogorov 
omplexityworld ([18℄). Rather than two-part 
odes, one uses general universal 
odes forindividual sequen
es; two-part 
odes are only a spe
ial 
ase.The formula argminM2M � logP (M)� logP (DjM) indi
ates that a modelthat generates an optimal data 
ompression (i.e. the shortest 
ode) is also thebest model. This is true even ifM does not 
ontain the original intended modelas was proved by [31℄. It also suggests that 
ompression algorithms 
an be usedto approximate an optimal solution in terms of su

essive steps of in
remental
ompression of the data set D. Equation 12 gives the length of the optimal two-part-
ode. The length of the two-part-
ode of an intermediate model Mi is givenby: �(Mi; d) = log�mid �+ C(Mi) � C(D)�O(1) (13)This equation suggests that the optimal solution for a learning problem 
an beapproximated using an in
remental 
ompression approa
h. This is indeed whata lot of learning algorithms seem to be doing: �nd a lossy 
ompression of thedata set by means of �nding regularities. This holds for su
h diverse approa
hesas nearest neighbor sear
h, de
ision tree indu
tion, indu
tion of asso
iation rulesand neural networks. There is a 
aveat however; Adriaans and Vit�anyi [4℄ haveshown that the randomness de�
ien
y not ne
essarily de
reases with the lengthof the MDL 
ode, i.e. shorter 
ode does not always give smaller randomnessde�
ien
y, e.g. a better theory. This leads to the following observations:{ The optimal 
ompression of a data set in terms of the model- and a data-to-model 
ode always gives the best model approximation "irrespe
tive ofwhether the 'true' model is in the model 
lass 
onsidered or not" [31℄7.7 This is true only in this spe
i�
 
omputational framework of referen
e. In a proba-bilisti
 
ontext, both for Bayesian and MDL inferen
e, the assumption that the true



{ This optimal 
ompression 
annot be 
omputed.{ Shorter 
ode does not ne
essarily mean a better model.These observations show that the naive use of the MDL prin
iple is quite risky.Learning by means of in
remental 
ompression might lead to a model that isworse then the one we started with.3.2 Kolmogorov 
omplexity meets thermodynami
sThe mathemati
al relation between thermodynami
 entropy and Kolmogorov
omplexity is rather straightforward while the philosophi
al impli
ations arequite formidable. The expression for the Gibbs entropy in thermodynami
s is:S = �Xi pi ln piThe 
orresponding de�nition for Shannon entropy is:H � �Xi pi log2 piA

ording to Bais and Farmer: "...this exa
t quantitative de�nition of informa-tion and its appli
ations trans
end the limited origin and s
ope in 
onventionalthermodynami
s and statisti
al me
hani
s."[5℄ They 
onsider information theoryto be more fundamental then thermodynami
s.The 
lose 
onne
tion between Shannon entropy and Kolmogorov 
omplex-ity is observed by, amongst others, Cover and Thomas: "Gratifyingly, the Kol-mogorov 
omplexity K is approximately equal to the Shannon entropy H if thesequen
e is drawn at random from a distribution that has entropy H. So thetie-in between information theory and Kolmogorov 
omplexity is perfe
t". ([11℄pg. 3).The two observations together i.e. the mathemati
al equivalen
e of Shannonentropy and Gibbs entropy and the approximate equivalen
e between Shannonentropy and Kolmogorov 
omplexity suggest a deep 
onne
tion between physi
sand 
omplexity theory. A similar (but mu
h stronger view) is expressed by Liand Vit�anyi in their standard textbook. On the basis of a somewhat di�erentanalysis they 
on
lude: "... it seems reasonable to assign to ea
h string x ane�e
tive thermodynami
 entropy equal to its 
omplexity K(x). ([32℄ pg. 551).They also dis
uss the relation between Shannon entropy and Gibbs entropy (pg.564).So let's take the suggestion of Li and Vit�anyi seriously. What happens whenwe observe a dynami
 system at a 
ertain point in time and store the results ina binary string? One would expe
t that there is a relation between the thermo-dynami
 qualities of the system and the mathemati
al qualities of the string. Inmodel is in the model 
lass 
onsidered 
an sometimes be 
ru
ial - this also explainswhy in Vapnik-Chervonenkis type approa
hes, 
omplexity is penalized mu
h moreheavily than in MDL [17℄ ).



this paragraph I present a theorem that stipulates a possible interpretation ofthis 
onne
tion. For this purpose I will assume that it makes sense to talk aboutthe temperature of a string:Conje
ture 1. We 
an assign a temperature to strings.For the moment the reader might interpret this as either a very deep insight or arather surrealisti
 artefa
t of the theory. Fa
t is that in the proof of the 
entraltheorem below temperature will be 
an
elled out against other variables. This iswhat one would expe
t, be
ause in our day to day experien
e the temperature ofdata sets is irrelevant. My paradigmati
 example will be that of a digital 
amera,but the theorem in prin
iple holds for a range of physi
al systems for whi
h westore observations in data sets. First let's assume that we 
an observe a sytemby means of a 
anoni
al measurement fun
tion h.De�nition 3. Suppose that � is a dynami
al physi
al system that evolves overtime. A 
anoni
al measurement fun
tion h : � ! f01g
e has the following prop-erties:{ every string produ
ed by h has the same length 
e, whi
h is 
alled the equi-librium 
omplexity asso
iated with h and{ h a
tually measures the entropy S of � at time t in terms of the Kolmogorov
omplexity of its output: ht(S) = 
m(C(ht(�))), where 
m is a 
onstant.{ Spe
i�
ally C(ht(�)) = 
e if � is in equilibrium, i.e. in that 
ase the outputof h is a random string.A 
anoni
al measurement fun
tion brings us from the dynami
 world of sys-tems to the stati
 world of binary data sets. Note that it is quite possible thath is a lossy fun
tion that gives only a partial model of �. A digital 
amera thatalways makes pi
tures with equal �le size is an approximation of a 
anoni
almeasurement fun
tion. The length 
e of the binary string that is the output ofh is a measure of the maximal amount of information that 
an be produ
ed.This amount of information will, by de�nition, only be rea
hed if � is in equilib-rium, hen
e the name equilibrium 
omplexity. Note that in an equilibrium statethe system has no free energy. All internal energy is 
onverted to work. This isasso
iated with a random string as output of the measurement. This motivates:Lemma 1. ht(U) = 
e: the internal energy U of the system is asso
iated withthe maximal Kolmogorov 
omplexity 
e of the output of h.The following theorem relates the free energy of a system with the random-ness de�
ien
y of the data set resulting from observations of the system:Theorem 2. Given 
onje
ture 1,lemma 1 and a set of 
anoni
al measurementsh : � ! f0; 1g
e of a dynami
 system � with free energy F and 
onstant tem-perature we have: ht(F ) � Æ(ht(�))i.e. the free energy of the system is linear in the randomness de�
ien
y of thedata set 
ontaining the measurement.



Proof: Note that h is a fun
tion from a system � to a set of binary strings. For� by de�nition 3 we have F � U�TS whi
h, under the homomorphism h gives:ht(F ) � ht(U)� ht(T )ht(S)By 
onje
ture 1 we stipulate that ht(T ) = 
t. By lemma 1 we have that ht(U) =
e. De�nition 3 gives: ht(S) = 
m(C(ht(�)))ht(F ) � 
e � 
t
m(C(ht(�)))If � is in equilibrium we have zero free energy. This gives:
e = 
t
m(C(ht(�)))At the same time by de�nition 3 we have C(ht(�)) = 
e for equilibrium situa-tions. So we have 
e � 
t
m
e = 0, whi
h gives:
t
m = 1Sin
e the temperature is 
onstant and 
m is only dependent on h the 
orre
tionsfor the homomorphism and the temperature 
an
el ea
h other out. Consequently:ht(F ) � 
e � C(ht(�))Here 
e gives the maximal 
omplexity of the output of h and C(ht(�)) the a
tual
omplexity at time t, this amounts to:ht(F ) � Æ(ht(�))This 
on
ludes the proof of the theorem. If we 
olle
t a set of adequatemeasurements of a system at time t we may say that the 
ompressibility or ran-domness de�
ien
y of the resulting data set re
e
ts the free energy of the system.If the data set is 
ompressible then the system 
ontains free energy. In that 
aseit is not in thermodynami
 equilibrium and 
apable of performing work. Onemight 
all theorem 2 the fundamental learnability theorem for physi
al systems.It shows how learning as data 
ompression and thermodynami
s intera
t. Data
ompression identi�es systems that are not in thermal equilibrium: i.e. systemswith stru
ture, systems with self organization, living systems et
. In real lifeperfe
t 
anoni
al measurement systems do not exist, if only for loss of energybe
ause of the system being observed. Canoni
al measurement systems allowus to ignore temperature in our data sets be
ause they deliver a perfe
t imageof the entropy of the original system. Of 
ourse this theoreti
al ex
er
ise is farfrom 
ompleted, but I hope that it o�ers a �rst sket
h of the 
omplex intera
tionbetween thermodynami
s and 
omplexity theory.4 Joule's free expansion experiment: an example oftheorem 2In Joule's free expansion experiment, whi
h is a standard textbook example,a high pressure ideal gas streams in to an isolated va
uum 
hamber. This is



a adiabati
 non-equilibrium pro
ess for whi
h most of the approximations ofthermodynami
s do not hold. One would expe
t the gas to 
ool down in thispro
ess, be
ause the temperature of va
uum is zero. Experiments show thatthis is not the 
ase: the temperature remains 
onstant. The results from theprevious paragraph 
an help us to understand this. This result is in line with thepredi
tions of theorem 2) in the sense that the only relevant variable 
u
tuationin this pro
ess is the des
riptive entropy.Suppose we have an ideal gas in 
ontinuous spa
e, basi
ally a set of n identi-
al perfe
tly elasti
 snooker balls in an isolated va
uum 
ylinder with no gravity.Suppose that at t0 the parti
les are all in one half of the 
ylinder with randompositions and velo
ities. This means that the system has not rea
hed an equilib-rium at time t0. With high probability, after a 
ertain period of time the parti
leswill be evenly distributed over the 
ylinder. Now the system � is given by thefollowing des
ription:{ The exa
t position and velo
ity of every parti
le given in real numbers attime zero,{ A des
ription of Newton's laws that regulates how the system evolves overtime.Note that the des
riptive 
omplexity of this system � is in prin
iple in�nite. Arandomly sele
ted real from any non-empty interval 
ontains in�nite informa-tion with probability 1. Now 
onsider a homomorphism pt that takes the exa
tposition of ea
h parti
le at time t and sends it to an integer 1 � i � k asso
iatedwith a grid of k 
ells de�ned by a 
ertain dis
rete 
oordinate system for the
ylinder. pt : � ! P(N) is a fun
tion from the system � to a set of integersthat is asso
iated with the position of the balls in the 
ylinder at time t. Apartfrom the in�nite size of the input there is nothing tri
ky about this fun
tion. Anystudent 
ould write the program on the basis of a suÆ
iently ri
h approximationof the real values in the input. To make the example 
omplete, suppose a se
ondfun
tion q : P(N) ! f01g
e that takes a set of integers S to a binary strings of length 
e that des
ribes this set. Again there is nothing tri
ky about thisfun
tion. Any student 
ould implement it. Finally let ht � qpt : � ! f01g
e,i.e. the 
omposition of pt and q. Thus ht approximates a 
anoni
al measure-ment fun
tion that takes the system � and produ
es a �le with an approximatedes
ription of the position of the parti
les at time t.First I analyze this situation from the perspe
tive of information theory. Anobserver that analyzes the history of � will see an in
rease of the Kolmogorov
omplexity of output of h to a 
ertain level, after whi
h it stabilizes. Afterthis point in time � has rea
hed a thermodynami
 equilibrium. Note that theequilibrium 
omplexity is dependent on the granularity of the grid used in h, i.e.we never measure the entropy of the original system dire
tly. It 
an in this 
asebe de�ned as: 
e = C(x) = log k+ logn+ log �kn�+O(1). This is the equilibrium
omplexity of � with respe
t to h. Here the terms log k and logn are needed to
ode the number of 
ells in the grid and the number of parti
les in the systemand the term log �kn� is the size of an index of the sele
tion of n out of k 
ells.



If one takes the granularity to be suÆ
iently high one 
an prove the followinglemma:Lemma 2. For all moments in time ti in whi
h � is in equilibrium and ea
hdis
rete 
ell 
ontains at most one parti
le the 
omplexity of the output x of htiwill be roughly the same with C(x) = log k + logn + log �kn� + O(1), i.e. theequilibrium 
omplexity.Proof: observe that sin
e the parti
les are randomly distributed over the spa
ethe string x des
ribes a random sele
tion of n 
ells out of k possibilities, i.e. arandom sele
tion of n integers � k . This gives the desired estimate .Lemma 2 allows us to make the following observation: if 
omplexity of theoutput hti is smaller than the equilibrium 
omplexity then � is not in a stateof equilibrium at time ti. Spe
i�
ally, when all the parti
les will be in one halfof the 
ylinder, the upperbound for the 
omplexity of the output x will be:C(x) � log(k=2) + logn+ log �(k=2)n �+O(1), whi
h, for large enough n, is mu
hsmaller than the equilibrium bound.Note that the opposite situation is possible: there are low entropy states thatare not 'sensed' by ht e.g. the situation in whi
h the parti
les are randomlydistributed over the 
ells, but ea
h parti
le is exa
tly in the middle of a 
ell.These states, however, are extremely improbable. So we have gained the followinginsight: if our data set is 
ompressible below the standard equilibrium des
ription
omplexity, then the system is not in equilibrium and will have free energy. The
onverse is not true. Theorem 2 gives the exa
t 
onne
tion.Let us analyze this example again in terms of 
lassi
al thermodynami
s.This is not unproblemati
 be
ause thermodynami
al derivations only work understri
t equilibrium 
onditions that are not always met. Note, that also in thederivation of Gibbs entropy a partition fun
tion Z is introdu
ed to renormalizethe 
lasses of velo
ities in to a sound probability distribution. Gibbs entropy isonly de�ned for 
anoni
al ensembles. The number of parti
les and the volumeare 
onstant so two 
onditions for 
anoni
al ensembles are met. Others vary overtime in the example. In prin
iple there are three di�erent phases:{ At time t0 all the parti
les are in one half of the 
ylinder with random velo
-ities and spatial distribution. For this part of the 
ylinder we 
ould 
al
ulatethe standard ma
ros
opi
 variables, temperature, pressure and entropy by
onsidering it (somewhat erroneously) as a mi
ro
anoni
al ensemble with�xed volume, number of parti
les and energy. The other half of the 
ylin-der is empty and thus has a va
uum: the pressure, the temperature and theentropy are all zero. One 
an use this separation of temperature to run aheat engine by allowing the heat to 
ow from the hot side to the 
old side.The Gibbs entropy for the total 
ylinder is not de�ned be
ause it is not inequilibrium.{ In the se
ond phase the atoms distribute themselves over the total spa
e,but no equilibrium is rea
hed yet. In this phase the standard ma
ros
opi
variables like temperature and pressure are not de�ned. The same holds forthe Gibbs entropy.



{ In the last phase a state of equilibrium is rea
hed. The Gibbs entropy as wellas temperature and pressure are well de�ned.There is no ex
hange of energy with the environment so we have rapid adiabati
expansion. We 
annot use the standard de�nition to estimate the work doneby the system, dU = TdS � PdV , sin
e P , V and T are not well de�ned forthe whole system during all the three phases. Still, internally we have heat 
owand this must be asso
iated with a potential amount of work done by the gas.Sin
e the velo
ities of the parti
les do not 
hange during the expansion, thetemperature will remain the same. The 
hange in free energy 
an be explained
ompletely in terms of a 
hange of entropy. Sin
e the gas does not do any workduring the expansion the temperature remains the same. This would be di�erentif the gas has to push away a piston during the expansion, then the temperaturewould also drop. The original free energy of the gas is 
ompletely transformedin to entropy: F = TdS (14)The homomorphism h allows us to estimate the relative 
hange of entropy.This is asso
iated with the relative di�eren
e between the equilibrium 
omplexityof the gas distributed over the whole 
ylinder minus the initial 
omplexity of thegas distributed over half of the 
ylinder:h(dS) = 
�1e (log�kn�� log�k=2n �+O(1)) � (15)
�1e (Z kk�n logx dx� Z k=2k=2�n logx dx+O(1))The integrals in the last part of this equation ni
ely show that the notionof 'volume 
hange' is also transferred to the information theoreti
al part of thetheory. This expression has to be 
orre
ted for the length of the output with afa
tor 
�1e where 
e is the equilibrium 
omplexity. This is asso
iated with thegranularity of the homomorphism h. Also h must be �ne grained to su
h a degreethat it re
e
ts the 
hange in entropy of the system. In order for theorem 2) todo its work it is not ne
essary to use a grid as �ne as in this example (i.e. oneparti
le per 
ell). This was only introdu
ed to make the mathemati
s easier.Note that, sin
e q in h is a 
anoni
al measurement fun
tion we 
an estimate therandomness de�
ien
y of the output of h at t0:Æ(ht0(�)) = log�kn�� log�k=2n �+O(1) (16)Sin
e the temperature does not 
hange we 
an 
onsider its image to be 
on-stant 
t = h(T ). Combining this with equations 14 and 15 we get:ht0(F ) = h(T )h(dS) = 
t=
e(log�kn�� log�k=2n �+O(1)) (17)



Insertion of equation 16 gives:ht0(F ) = 
t=
e(Æ(ht0(�)) (18)This is the desired result: for 
anoni
al measurements of adiabati
 pro
esses,with 
onstant temperature, the free energy of the system is proportional to therandomness de�
ien
y of the measurements with 
orre
tions for temperature andthe granularity of the measurement. The fa
tors 
t=
e remain in the �nal resultbe
ause in this 
ase our homomorphism h does not obey the stri
t 
onditions oftheorem 2. Information theory 
an help us to quantify thermodynami
 variablesin situations in whi
h some of the units are ill de�ned.5 Fa
ti
ityThis analysis shows that entropy and Kolmogorov 
omplexity not ne
essarilymeasure the interestingness of a system of a data set. All systems in the uni-verse will eventually rea
h a state of maximal entropy. A system in maximalentropy has played its part and has no interesting stru
ture. Likewise, althougha random string x 
ontains in a way the maximum amount of information pos-sible for a string of length jxj, it 
ontains without any 
ontext no meaningfulinformation. We 
an not expe
t to learn very mu
h about a system that is ina state of thermodynami
 equilibrium. On the other hand a string with low
omplexity does not 
ontain very mu
h information and thus by de�nition itdoes not 
ontain mu
h meaningful information. Interestingness or meaningful-ness of a data set seems to be lying in a tension between 
haos and stru
ture.As a �rst approximation of this notion I will de�ne the idea of the fa
ti
ity ofa data set. The fa
ti
ity of a binary string will be maximal if C(x) = 1=2jxj.The maximum amount of meaningful information 
an be measured in terms ofthe what I 
all the normalized fa
ti
ity of a string. It is the produ
t of thenormalized entropy C(x)=Cmax(x) and the normalized randomness de�
ien
y(Cmax(x) � C(x))=Cmax(x). For strings this is:'(x) = 4C(x)jxj � jxj � C(x)jxj (19)The fa
tor 4 serves to se
ure a maximum fa
ti
ity of 1. Fa
ti
ity 
an be seenas a normalized information density measure. For thermodynami
 systems thisequation is transformed in to:'(�) = 4 SSmax � Smax � SSmax (20)This is the rationale behind the experiment represented in �gure 1. Here I havetaken pi
tures of the pro
ess of mixing bla
k and white paint. I use the fa
ti
itys
ore to sele
t the most interesting pi
ture.One might obje
t that my de�nition of fa
ti
ty is arbitrary. Why sele
t themaximum on the balan
e between order and 
haos? Why not 1/3 or 1/8? The



motivation lies in theorem 2 in the previous paragraph. If the data set is produ
edby a 
anoni
al measurment fun
tion then we have maximal fa
ti
ity in the exa
tspot were the produ
t of the free energy stored in the system and the amountof information stored in the system is maximal. Fa
ti
ity faithfully measures theamount of useful information in a system: if fa
ti
ity is high then there is a lot ofinformation in the system and the system has a lot of free energy to do somethingwith this information. Of 
ourse there is a 
ertain arbitrariness and one 
ould
hoose another optimum. This is a form of arbitrariness that is very 
ommon ins
ien
e. We 
an measure temperature in degrees Celsius, Fahrenheit or Kelvin.This is OK as long as there are 
lear 
onversions and all units of measurementrefer to the same underlying 
on
ept, in this 
ase temperature. Here I presentfa
ti
ity as an abstra
t formal 
on
ept with a well founded stipulative de�nition.

Fig. 2. A tree representation based on the normalized 
ompression distan
e between12 Piano pie
es.The fa
t that state of the art data 
ompression routines 
an be used to makepredi
tions about data sets that seem to have 
ognitive relevan
e was re
entlydis
overed by Vit�anyi and Cilibrasi [9℄. Suppose that x and y are data sets andthat we have a 
on
atenation operation on these sets that allows us to form xy.Let C be a general 
ompression routine su
h that C(x) is the length in bits ofdata set x when 
ompressed by C. We 
an now de�ne the related NormalizedCompression Distan
e (NCD):NCD(x; y) = C(xy) �minfC(x); C(y)gmaxfC(x); C(y)g (21)Figure 2 shows that NCD seems to be able to identify style 
onne
tionsbetween di�erent piano pie
es. NCD seems to work well for data sets that have



a natural linear representation su
h as musi
 and language. For images it seemsto work less well due to the fa
t that we do not have good general purpose
ompression algorithms for higher dimensional data sets.

Fig. 3. Fa
ti
ity s
ores for three well known works of art. Pi
asso's Guerni
a s
oresa maximal 1. It 
ontains optimal meaningful information. As was to be expe
ted,the bla
k square of Malewi
h has a low s
ore on the interestingness s
ale. It 
ontainslittle information. But also Pollo
ks 
omposition No. 5 has a lower s
ore. In a way, it
ontains 'too mu
h' information to be interesting. Note that people always speak about'the drippings' of Pollo
k. Apparently it is diÆ
ult to keep these high entropy imagesapart. The fa
ti
ity s
ores were 
al
ulated in the same way as in �gure 1. These worksof art typi
ally represent the period of 
rises in painting in the 20th 
entury in whi
hpainters were trying to rede�ne the 
on
eptual spa
e of their art.5.1 Fa
ti
 pro
esses and fa
ti
 data setsThe fa
ti
ity is optimal if the balan
e between order and 
haos is optimal. Fa
-ti
ity is partly motivated by insights from thermodynami
s, but 
an also be



introdu
ed via other 
onstru
tions. Fa
ti
ity in a dynami
 setting 
an be seen asa rule breaking 
on
ept. Fun
tions that follow and break rules with some regu-larity 
reate data sets with high fa
ti
ity. Suppose we want to 
onstru
t a binarystring of k bits with maximum fa
ti
ity, i.e. C(x) = k=2. For any k of suÆ
ientsize, strings with near optimal fa
ti
ity exist in abundan
y: just 
on
atenate alow 
omplexity string of length of 
a. k=2+ logk=2+O(1) to a random string oflength 
a. k=2� log k=2�O(1), where the term log k=2 serves to 
ode the lengthand O(1) serves to 
on
atenate the �rst part to the se
ond part. This gives atleast 2k=2�log k=2�O(1) strings with basi
 near optimal fa
ti
ity and there aremany more. We are interested in pro
esses that 
reate fa
ti
ity. The followingde�nition is useful:De�nition 4. An in
remental information 
reation pro
ess is 
alled fa
ti
 ifit maintains 
onstant fa
ti
ity of the total generated data set.We 
all data sets with high fa
ti
ity also fa
ti
. Note that in order for a pro
essto be fa
ti
 it must have a

ess to an unlimited sour
e of new information duringits exe
ution. In general, fa
ti
 pro
esses seem to be the result of two 
on
i
tingfun
tions: one generating fun
tion that is an unlimited sour
e of new informationand a 
onstraining fun
tion that regulates the produ
tion of information. Notethat although fa
ti
 data sets exist in abundan
e there is no re
ursive routinethat 
an 
onstru
t them sin
e the Kolmogorov 
omplexity needed to judge thefa
iti
ity s
ore 
an not be 
omputed. Another way to say the same thing is thatre
ursive routines 
an not 
reate new information fast enough to sustain fa
ti
ity:re
ursion is not fa
ti
. Data sets that are fa
ti
 with high probability 
an easilybe approximated by 
omputational routines that use a random generator asgenerating fun
tion and a standard data 
ompression fun
tion as 
onstrainingfun
tion. There is an abundan
e of examples of fa
ti
 pro
esses:{ Evolutionary pro
esses are in general fa
ti
. Here mutation is the informationgenerating fun
tion and the environment that regulates survival serves as a
onstraining fun
tion.{ A 
ooperative tea
her (See [3℄). If we have a learning agent with limited
omputational resour
es (the 
onstraining fun
tion) a 
ooperative tea
her(the generation fun
tion) would follow a strategy of sele
ting simple exam-ples that allow the 'pupil' to 
ompress the examples in to rules with relativeease. When the pupil has digested the simple examples the tea
her 
an shiftto more 
omplex ones. Thus the 
omplexity of the examples in
reases mono-toni
ally. The tea
her will sele
t his examples in a narrow band betweenwhat the pupil already knows (order) and what is too 
omplex to pro
ess(subje
tive 
haos).{ Curiosity driven '
reative' agents as proposed by S
hmidhuber (See [29℄).Under assumption that the general 
apa
ity to learn gives an evolutionarybene�t, we expe
t learning agents that are the produ
t of evolution to havesome me
hanism that drives them to sele
t new examples that are opti-mal given their 
urrent theories about the stru
ture of their environment.Su
h an explanation of the evolutionary bene�ts of 
uriosity seems plausi-ble. By the same token su
h a 
uriosity driven agent should be in
lined to



ignore any low-
omplexity examples that are already pro
essed as boringand sear
h examples that 'satisfy' its 
uriosity. These are the examples thatthe agent will �nd 'interesting' in this stage of the learning pro
ess. Herethe sear
h pro
ess of the agent of the generating fun
tion and the subje
tive
ompression routine of the agent is the 
onstraining fun
tion. One mighteven interpret 
uriosity driven s
ienti�
 heuristi
s as an advan
ed variant ofsu
h an evolutionary survival strategy for the human ra
e.Let us return to our original ambition. Given a system � we 
olle
t a setof measurements D and represent them in a string x. We are interested in anexplanation of the stru
ture of � and a predi
tion of its behavior. What dothese ambitions mean in the 
ontext of the framework that I have des
ribed? Wehave seen that we should be 
autious about the use of in
remental 
ompressionalgorithms. Yet in the real world data 
ompression seems to be a reasonableindu
tive strategy. This amounts to the following intuitive:Claim. The distributions we �nd in the world are generally benign in the sensethat time and memory bounded tests with reasonable limits for Kolmogorov
omplexity are suÆ
ient for an adequate 
omplexity estimate.What the memory and pro
essing time limits would be is a problem for an otherpaper, but a reasonable intuition would be that the limits lie well within thepro
essing 
apa
ity of the human brain. Another way of formulating the sameprin
iple is: if a system looks like it is in thermodynami
 equilibrium, with highprobability it is. This implies that data sets that look random but in fa
t arehighly stru
tured, like the de
imal expansion of the number � are highly rarein nature. Why (and if) these data sets do not o

ur is not 
ompletely 
lear,but a natural assumption would be that natural systems that are 
apable of
al
ulating su
h ri
h data sets are by nature instable and therefore do not existlong enough in time.6 Algorithmi
 estheti
sRe
ently S
hmidhuber de�ned a notion of 'interestingness' in a paper with therather ambitious title "Simple Algorithmi
 Prin
iples of Dis
overy, Subje
tivebeauty, Sele
tive Attention, Curiosity & Creativity" [29℄. Sin
e there is a relationwith the notion of fa
ti
ity it is useful to present a 
riti
al dis
ussion of theseideas. Although I am 
riti
al of S
hidhuber's theories, at least we seem to agreeon one point: algorithmi
 information theory is a useful formalism to evaluateestheti
 theories. Indeed, as we saw in the previous paragraphs, 
uriosity drivenagents tend to produ
e fa
ti
 data sets. But it seems not right to equate thenotion of 'interestingness' that 
an be de�ned for these agents with beauty.As an algorithmi
 estheti
s S
hmidhubers 
on
eption is not satisfa
tory. In thefollowing I will argue that the notion of subje
tive 
ompressibility in art is mu
hmore 
omplex than S
hmidhuber assumes. In parti
ular great works of art seemto be a ri
h sour
e of meaning be
ause of the fa
t that they trans
end our



rationality (i.e. they have high fa
ti
ity in themselves and 
an not be 
ompressed)and not be
ause they have low 
omplexity. Beauty is not an evolutionary 
on
ept.Artists do not try to 
onstru
t simple dida
ti
 obje
ts, they try to 
onstru
tobje
ts that are as ri
h in meaning as possible, i.e. they try to optimize fa
ti
ity.

Fig. 4. An illustration of the 
omplex relation between data 
ompression and idealiza-tion in art. The eigenfa
e shows that a pro
ess of data 
ompression in to a general idealform is an element of a 
ertain artisti
 tradition. At the same time extreme realism(very little 
ompression) and s
hematization (extreme 
ompression) exist. Note thatthe portrait in the upper left is from Fayoum. It shows that individual portraits alreadyo

ured in antiquity, illustrating the a-histori
al 
hara
ter of this form of realism. Theidea that beauty has a relation with low-
omplexity and that the history of art showsan evolution to obje
ts of in
reasing 
omplexity is simply denied by the fa
ts. Theautomati
ally 
onstru
ted eigen fa
e is due to Luis Ja~nez Es
alada and Miguel AngelCastellanos of the University of Madrid.At �rst sight the idea of low 
omplexity art seems to �t ni
ely with somepredominant themes of western philosophy dating ba
k to an
ient Greek thought:1) the Platoni
 identi�
ation of beauty and truth and 2) the identi�
ation oftruth with simpli
ity. In various sour
es from antiquity we �nd the notion thattruth and beauty 
an be rea
hed through a pro
ess of 'idealization' removing allthe errors and faults from a 
olle
tion of similar obje
ts.8 The fa
t that thereare philosophers that defend those ideas does not imply that they des
ribe whatartists a
tually do. Figure 4 shows that the reality is mu
h more 
omplex. Artists8 See e.g. Xenophon, Memorabilia III. This a
tually shows that the notion of data
ompression as a pro
ess of idealization that approximates some form of truth ismu
h older than O

am. MDL as a s
ienti�
 methodology has its roots in Greekthought.




ertainly use 
ompression, but not in su
h a way that beauty 
an in general beidenti�ed with low-
omplexity. The following variants seem to o

ur:{ Realism: the representation is isomorphi
 to the data.{ Idealization: ideal s
hemas optimally 
ompress the des
ription of a set ofexamples with errors.{ S
hematization: optimal 
ompression under bounded 
omplexity.{ Chara
terization: optimal bounded 
ompression of an individual example
onditional to the optimal general theory.What is more, all these variants o

ur side by side throughout history. Thereis no development from simple to more 
omplex art as would be predi
ted byS
hmidhuber's theory. Espe
ially Plato's identi�
ation of truth and beauty that�ts so ni
ely with the 
on
ept of a 
uriosity driven notion of evolutionary beautyshould be regarded with suspi
ion. In the end artists were banned from Plato'sideal state. Artists do not follow rules, they break them.

Fig. 5. Left, a pi
ture of a regular s
hemati
 feminine fa
e due to S
hmidhuber [27℄.In the middle, a detail of a 
opy of the Mona Lisa by Leonardo's untalented proteg�eSalai. On the right a s
heme for a 
hilds head based on an arrangement of four 
ir
lesin a square due to Fioletti (1608). The last image shows that 
onstru
tion of fa
esa

ording to simple geometri
al s
hemes was an element of artisti
al training in theRenaissan
e. It is 
lear from the plain look of Salai's painting, whi
h 
onveys nothingof the fas
ination of the original, that great works of art are diÆ
ult to 
opy, i.e. theyhave a meaning that 
an not be 
aptured by simple geometri
al s
hemas. This supportsthe view that great works of art optimize fa
ti
ity and 
an not be 
ompressed in tolow-
omplexity data sets.The world of art and s
ien
e have di�erent rhetori
al models. An artist 
om-muni
ates dire
tly with his audien
e through his produ
ts. If the essential qualityof a work of art 
ould be des
ribed adequately in language then the work of artwould be nothing but an illustration of the text, and thus stop to be an inde-pendent work of art. From this perspe
tive any attempt to formulate a s
ienti�
theory explaining what beauty is or pres
ribing what human beings should or



would �nd beautiful is doomed to fail. Books and theories by authors like Ra-ma
handran [26℄ and S
hmidhuber [29℄ present us with hypotheti
al models ofthe human mind and then try to de�ne beauty or 
reativity in terms of thesemodels. Su
h an ex
er
ise may give us deep insights, it does not 
hange the fa
tthat beauty trans
ends the tools of s
ien
e.7 Con
lusions and further workIn this paper I studied the notion of meaningful information. I showed that thisnotion is intri
ately 
onne
ted with the idea of learning by 
ompression. I intro-du
ed the 
on
ept of fa
ti
ity as a �rst approximation of meaningful information.I studied data 
ompression in the 
ontext of thermodynami
s and I showed that,under adequate measurement 
onditions, the randomness de�
ien
y of a data setis asso
iated with the free energy in the data set.Note that systems in thermodynami
al equilibrium have no signi�
ant de-velopment in time. Redu
ing the des
ription of these systems to random twopart-
odes 
ompresses the des
ription of the system to those elements that aretime invariant. That is why su
h des
riptions 
an be used to predi
t the futureof the system.There are a number of ways in whi
h this resear
h 
ould be expanded. Firstlythere is the issue of developing good 
omplexity estimates for spe
i�
 problem
lasses, so that MDL approa
hes 
an be used. I have given initial reports for DFAindu
tion but mu
h improvement is possible [1℄. Another dire
tion of resear
his a deeper analysis of the distributions that I suppose are essential for our
apabilities to analyze the world around us. Another interesting exer
ise 
ouldbe a further embedding of these insights in the history of philosophy.Interestingly the 
laims of the role of fa
ti
ity in art I have defended hereseem to be open for empiri
al testing (and thus to plain Popperian falsi�
ation).This is due to the fa
t that Cilibrasi's Normal Compression Distan
e seemsto measure 
ognitive relevant aspe
ts of musi
 represented as midi �les. Theneed felt by 
omposers to stre
h the limits of 
onsonan
y and 
ounterpoint at a
ertain point in history, should be measurable as an impossibility to 
ome up withinteresting original melodies given enough Midi representations of melodies up tothat moment. Se
ondly, given the 
urrent status of fMRI te
hnology it is possibleto present melodies with various variantions in 
omplexity and fa
ti
ity and tostudy invariants in representation in the brain. Normal 
ompression distan
eseems not to be able to measure 
ognitive relevant aspe
t of images but at thismoment 
omparable fMRI and PET-s
an studies are done measuring the brain'srea
tion to images with various Weibull and non-Weibull distributions that havea relation with fa
ti
ity [16℄. Even if the 
reation of real art will remain a mira
lefor ever, we are bound to get a mu
h deeper insight in the 'innate' probabilitydistributions that our brain uses to analyse and predi
t the world around us.
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