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Abstract. The notion of meaningful information seems to be associated
with the sweet spot between order and chaos. This form of meaningful-
ness of information, which is primarily what science is interested in, is
not captured by both Shannon information and Kolmogorov complex-
ity. In this paper I develop a theoretical framework that can be seen
as a first approximation to a study of meaningful information. In this
context I introduce the notion of facticity of a data set. I discuss the
relation between thermodynamics and algorithmic complexity theory in
the context of this problem. I prove that, under adequate measurement
conditions, the free energy of a system in the world is associated with the
randomness deficiency of a data set with observations about this system.
These insights suggest an explanation of the efficiency of human intelli-
gence in terms of helpful distributions. Finally I give a critical discussion
of Schmidhuber’s views specifically his notion of low complexity art, I
defend the view that artists optimize facticity instead.

keywords: meaningful information, learning as compression, MDL, two-part code
optimization, randomness deficiency, thermodynamics, free energy, algorithmic
esthetics.

1 Introduction: Learning, compression and meaningful
information

Since pre-socratic philosophy there has been a tension between a description of
the world as a dynamic process (Heraclitus) or as a static structure (Parmenides).
Plato’s theory of ideas explains the chaotic complexity of the world around us
in terms of an imperfect reflection of perfect immutable ideal forms. We can
know and understand the world because our mind participates in this world of

* This project is supported by a BSIK grant from the Dutch Ministry of Education,
Culture and Science (OC&W) and is part of the ICT innovation program of the
Ministry of Economic Affairs (EZ).



ideas. Learning to understand the world is in fact a kind of remembering what
one already knows. Later philosophers like William of Occam threw the world
of ideas in the dustbin ("entia non sunt multiplicands praetor necessitated”, or
”entities should not be multiplied beyond necessity”) in favor of the nominalistic
view that our descriptions of the world should be as simple as possible. This
principle, often referred to as Occam’s razor (to cut off Plato’s beard of ideas),
has had a decisive influence in the history of science. In modern methodology
of science this notion is studied under various guises: Occam’s razor [15], the
minimal description length (MDL) principle [6; 17], two-part-code optimization
[31], learning as data compression [33] etc. All these approaches are indebted
to the formulation of an algorithmic solution to the problem of induction by
Solomonoff [30], Chaitin [7] and Kolmogorov [32], which is one of the greater
achievements of science in the 20th century.

In its modern guise this research often goes hand in hand with a computation-
alistic conception of the human mind as a kind of general problem solver. This
conception can, via the influence of Carnap, also be traced back to the empiricist
psychology of the mind of Locke and Hume [21; 19]. Solomonoff’s solution to the
induction problem is associated with the concept of Kolmogorov complexity as
a measure of the amount of information in a binary object. Roughly the Kol-
mogorov complexity of a binary string is the length of the shortest prefix-free
program that computes this object on a universal Turing machine. This insight
allows us to formulate the notion of a universal distribution that assigns an a-
priori probability to an object that is inversely logarithmic in its Kolmogorov
complexity. Especially Solomonoff, who was the first to formulate the idea of a
universal distribution, seems to have been driven by an ambition to solve the
general problem of mathematical induction on one hand and formulate a general
theory of optimal human learning based on evolution on the other: My general
conclusion was that Bayes’ theorem was likely to be the key. That a person was
born with a reasonably good builtin a priori probability distribution. The per-
son would then make predictions and decisions based on this distribution. The
distribution was then modified by their life experience. The initial ”Builtin”
distribution was obtained by organic evolution. There was a strong selection in
favor of organisms that made decisions on the basis of "good” a priori probabil-
ity distributions. The organisms making poor decisions would tend to have fewer
descendants. [30] This research program seems to be the driving force behind
the work of researchers like Schmidhuber [28] and Hutter [20]. For a discussion
of compressibility as a general cognitive principle see [§].

Occam’s razor has been questioned throughout history with fierce opponents
(e.g. [15]) and strong defenders (e.g. [33]). Until recently the view of learning as
algorithmic data compression did not seem to have much practical value. Lots
of learning algorithms in fact perform some kind of data compression, but this
was not a guiding principle of their design [24; 13]. Two developments in the last
five years have changed this perspective quite fundamentally : 1) a better un-
derstanding of the mathematics behind compression, specifically Kolmogorovs
structure function [31; 32] and 2) the application of existing implementations



of compression algorithms to approximate the ideal (and uncomputable) Kol-
mogorov complexity as pioneered by Cilibrasi and Vitényi [9; 10].

1.1 A thermodynamic interpretation of Solomonoff’s program

At this moment we have not only a much better understanding of the theoretical
issues behind data compression. It has also become clear that MDL as a uni-
versal inductive methodology has flaws. Griinwald and Langford have identified
conditions under which MDL behaves suboptimal [17]. Adriaans and Vitdnyi
showed that, although an optimal compression of a data set produces in a cer-
tain sense an optimal theory, this does not imply that incremental compression
of data sets, such as most learning algorithms perform, is a generally valid strat-
egy [4]. The quality of our predicitive models may vary indefinitely with each
incremental compression step we make. Because of the uncomputatibility of the
optimal compression we can never be sure to have reached a good theory in any
finite time. In a purely algorithmic universe MDL actually would not be a very
good strategy. The fact that bounded resource data compression 'works’ in our
universe has to do with its specific physical structure. Consequently there can
not be a pure algorithmic explanation of the validity of MDL. The extremely
efficient data compression that the human mind is able to perform seems to be
driven by bias that are not purely mathematical. In this context the 'built-in’
a priori distribution that was referred to in the citation of Solomonoff above
could be updated in our theoretical models along the following lines: ” We are
intelligent agents that have evolved via a process of evolution in a universe that
has the following structure:

1. It is spatio temporal.

2. It is subject to elementary physical laws. In particular it obeys the laws of
thermodynamics. It has an irreversible arrow of time that is associated with
a continuous increase in entropy.

3. It supports the spontaneous emergence of universal computational processes
[34]. Since the capacity to store information presupposes the existence of
reversible processes (bit-flips) and since recursive functions discard informa-
tion, this implies that it contains systems that can sustain thermodynamic
non-equilibrium states during a certain time.

4. It supports various functions for the distribution of information through
space: light (vision), mechanical interaction (touch, hearing) and chemical
interaction (smell, taste). These information distribution functions act as
lossy’ homomorphisms that only convey partial information. In general the
information decays at least polynomially with the distance in space.

In the context of evolution we may expect our sensory organs and general
problem solving capabilities to be optimized for these conditions. In particular
one would expect agents emerging in these conditions to have advanced capabili-
ties to evaluate spatial variations in entropy. Since systems increase their entropy
over time, places with low entropy are naturally ’interesting’ and may create life



sustaining conditions. Also the fact that such agents could emerge in an evolu-
tionary process presupposes the environment to be benign in the following sense:
the lossy information distribution functions convey enough information to sur-
vive. This implies that detection of entropy variations that are preserved under
lossy compression (i.e. general detection of density variations) is sufficient for
survival.!

This thermodynamic variant of Solomonoff’s program moves us away from a
more radical interpretation of his work implying a computationalistic view of the
world, i.e. the metaphysical theory that the world essentially is a computational
process and that the human mind is a universal computer. The connection is
as follows: the application of the universal distribution to a data set seems to
imply that we regard this data set as the result of a computational process. If
we interpret the human mind as a general problem solving device that is the re-
sult of an evolutionary process then it is natural to suppose that it is optimized
for data sets that are produced by computational processes, i.e. it evolved in a
world that is itself computational. Computationalistic ideas have been defended
by a variety of authors like Wolfram [34], Schmidhuber, Lloyd [23], Floridi and
Zuse: ” The entire universe is being computed on a computer, possibly a cellular
automaton.”? Tt is clear that this form of computationalism is a purely meta-
physical position which can not be verified at best, but which prima facie is
at variance with plain observations we can make in everyday life: e.g. although
the laws of gravity can be described in terms of simple mathematical regulari-
ties there is nothing that suggests that gravity is itself a computational process.
Metaphysical computationalism therefore should be rejected as unscientific. Fur-
thermore, given the flaws of MDL discussed above, it is difficult to defend the
idea that the human mind evolved as a purely algorithmic compression based
problem solver.

The rejection of computationalism implies a view of computational models
of processes in the world as phenomenological: i.e. they describe processes in
the world without any presupposition about their ontological status. An ex-
planation of the fact that the world at different levels of aggregation and over
different phase transitions can be described by simple high level mathematical
equations remains one of the great challenges of science. Assuming that the world
is essentially a computational process will not bring this issue any closer to a
solution.

! This last condition seems to rule out exactly those data sets that given the results
of Adriaans and Vitanyi [4] could bring a general compression based bounded prob-
lem solver in to trouble. It is a well known principle in information theory that if
a set of messages has systematic density variations it does not have maximal en-
tropy. An environment is benign if the opposite condition also holds: If a data set is
compressible it has density variations. This condition rules out the malicious demon
that presents data sets that are apparently random, but in fact can be compressed
substantially, e.g. decimal expansions of the number 7. Such data sets indeed seem
to be sufficiently rare in our universe such that a failure to recognize them in general
does not create life threatening risks. Of course they still do occur in nature.

2 Konrad Zuse, as he referred to this as "Rechnender Raum (Zuse 1967, 1982).



1.2 Meaningful information

There is a connection with the notion of meaningful information. Formal defini-
tions of information like those of Shannon and Kolmogorov do measure informa-
tion in data sets but they do not capture the notion of meaningful information.
This is immediately clear when we note that the most information rich radio
transmission we could send is pure noise. Any station following this strategy
would soon loose its audience. Data sets with maximum entropy are not con-
sidered to be interesting by human beings: such sets are rich in information but
they contain no meaningful information. On the other hand a transmission of
pure silence would also not be considered to be very informative. They contain
no information at all. Meaningful information seems to exist in the ’sweet spot’
between order and chaos.

In this paper I associate meaningfulness with facticity, but this is no doubt
only a crude approximation. In general science, in the study of human cognition
and even in art we seem to have an interest in systems that have a complex-
ity between order and chaos, between boredom and noise. The ’interestingness’
of these data sets is related to compressibility ([12], [14]). The thermodynamic
explanation for this seems to be the fact that, in a universe in which entropy nat-
urally increases over time, systems that maintain a low entropy over a period of
time are 'by definition’ interesting. Compressibility is associated with structure,
with self-organization and with the principles of life itself.

It is important to distinguish this question from the related ambition of re-
searchers that are interested in formulating a theory of optimal learners based
on Kolmogorov complexity. Schmidhuber even has formulated a theory of al-
gorithmic aesthetics and low complexity art along these lines [27]. Recently he
introduced a notion of interestingness as the first derivative of subjective com-
pressibility [29]. This theory deals with a subjective notion of interestingness at
a certain time for a certain agent. Facticity on the other hand is an a priori
quality of data sets, i.e. products of the human mind. As such it leads to pre-
dictions that can in principle be verified empirically given the present state of
technology. Since I am also interested in a theory of algorithmic esthetics T will
present a critical discussion of the ideas of Schmidhuber in a separate paragraph
at the end of this paper.?

In the context of this paper I am not so much interested in the definition of
an optimal problem solver but in the question why the universe produces data
sets from which anything can be learned at all. Why does the universe act as a
cooperative teacher? Why do we live in a universe in which MDL is a valuable
methodological principle? The reason for this shift in direction is the insight
that the study of algorithmic strategies for problem solving, as such, do not ex-
plain the efficiency with which we solve problems. Theories about algorithmically
optimal problems solvers give an interesting framework for the transcendental
analysis of learning but in order to explain the efficiency of learning an analysis
of additional bias is necessary. This paper does a first step in this direction by

% The ideas on a dialectics of facticity and art were presented in my Paradiso lecture
at the beginning of 2007.



analyzing bias that stem from thermodynamics. This shift is not in conflict with
Solomonoff’s research program but more or less orthogonal to it. Surprisingly,
from a philosophical point of view, this change of direction is associated with a
shift from an empiricist tabula rasa position to a more Cartesian/Kantian view
in which a learning agent shares bias with the world in which it is embedded.
This should be interpreted not so much as innate ideas, but as the theory that an
agent inherits distributions from the world from which it originates. This is fully
compatible with the observation cited above of Solomonoff that human beings
are: ”born with a reasonably good builtin a priori probability distribution.”
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Fig. 1. Facticity scores for mixing black and white paint. For a deeper discussion see
paragraph 4. The facticity of a data z is the product (times 4) of the normalized entropy
C(z)/Cmax(z) and the normalized randomness deficiency (Crmaz(z) — C(2))/Cmaz(x).
Configuration 4 has the best balance between order and chaos and thus would be
the most ’interesting’ one. The scores have been calculated using JPEG, followed by
RAR compression. Maximal entropy Crmaz(2) has been approximated by adding 400 %
noise to the images. The standard entropy C(z) is approximated by the file size after
compression. Note that the resolution of the camera influences the measurements. The
addition of hard pixel noise creates a random image that the camera never could
capture. This is the reason that none of the pictures reach the maximal facticity of 1.



2 Learning and Thermodynamics

Here is an experiment. Take a cup of coffee and pour some cream in it (See
Figure 1). Take a picture of it with your digital camera. In the beginning the
cream will be just an uninteresting blob. Stir slowly and make pictures of various
stages that have nice patterns. Continue until the cream has dissolved and your
cup has an even brown color. Drink the coffee, then look at the file size of the
different pictures.

If your camera uses an adequate compression algorithm you will find that the
file size has increased up to a certain point and then decreases. The compression
algorithm of your camera reflects the complexity of the data set until the moment
that the complexity has reached a global equilibrium and is beyond its resolution.
In this experiment we have a system that evolves in time, the cup of coffee, and a
data set of observations, the pictures. The crux of this experiment is that the size
of the individual pictures somehow reflects the ’interestingness’ of the system. In
the beginning there is a lot of order in the system. This is not very interesting.
In the end there is an equilibrium that also has little cognitive appeal. Below I
will propose a theory to make these ideas more precise.

Let us redefine the problem of learning as a general problem of induction.
Suppose we study some universe 1" that contains a certain system Y. In principle
X could be anything: the human brain, the living cell, a black hole, the weather.
For the moment we will suppose that X' is an isolated physical system that exists
in space and time. The problem of induction now takes the following form: can we
develop a description of X' that: 1) explains its structure 2) predicts its behavior?
Behind these issues there is still a deeper problem. Note that by denoting S as
a system we have already made a hermeneutic jump. By considering Y as a
system we have decided that it is interesting. The question is: can we give a
formal description of this notion of interestingness. This last question cannot be
answered by means of an analysis of the formal complexity of X alone. In order
to understand these questions we must look at the physical background and
specifically at the theory of thermodynamics 4. The first law of thermodynamics
describes the change of internal energy U of a system in terms of the difference
between the amount of heat () absorbed by the system and the amount of work
W done by the system:

AU =dQ—dw (1)

The second law of thermodynamics states that a change of entropy of any system
is directly related to a change in the amount of heat absorbed by the system,
and inversely related to the absolute temperature T'. Moreover the entropy never
decreases in time:

ds = dQ s > 0. 2)

T dt
An important notion for our research is that of free energy:

F=U-TS (3)

* For a discussion of the relation between physics and information see [5]



The free energy is associated with the amount of energy in the system that is
free to do work. If a system is in a state of thermal equilibrium then the free
energy is minimal and the entropy is maximal. In a gas the total entropy in
equilibrium is given by:

S=-> pilogp (4)

where p; are the individual probabilities of the velocities of the particles. In the
limiting case where all probabilities are equal p; = p = 1/w we get:

S =Inw. (5)

This is the formula that Boltzmann had engraved on his tombstone. It tells us
that in a state of maximal equilibrium the entropy is the log of the number of
accessible states.

What should we conclude from these definitions in the context of learning?
Note that for a closed system in thermodynamic equilibrium macroscopically
measurable quantities do not vary over time. This means that there is very little
that we can learn about a system in thermodynamic equilibrium. Such systems
do not have an internal structure and they do not have an interesting history.
Consequently learnability is associated with non-equilibrium states of systems.
Here is one possible objective answer to the question what distinguishes a sys-
tem from its environment. Separate systems are those parts of the world that
maintain en entropy that is different from their environment during a certain
period of time. Consequently learnable systems are associated with variation
in entropy. This implies no maximal entropy and thus an amount of free en-
ergy larger than zero. Self-organization is typically associated with systems that
maintain an entropy that is different from the environment for a certain period
of time. A world that is in a state of thermal equilibrium does not contain any
meaningful information, has no structure, no interesting development and no
free energy.

3 Kolmogorov complexity

Now we turn our attention to Kolmogorov complexity as a theory about optimal
complexity of data sets. Let x,y,2 € N, where A/ denotes the natural numbers
and we identify N and {0, 1}* according to the correspondence

(0,¢),(1,0),(2,1),(3,00), (4,01), ...

Here € denotes the empty word. The length |x| of x is the number of bits in the
binary string z, not to be confused with the cardinality |S| of a finite set S. For
example, |010] = 3 and |¢| = 0, while |[{0,1}"| = 2" and || = 0. The emphasis is
on binary sequences only for convenience; observations in any alphabet can be
encoded in a ‘theory neutral’ way. Below we will use the natural numbers and
the binary strings interchangeably. In the rest of the paper we will interpret the
set of models M in the following way:



Definition 1. Given the correspondence between natural numbers and binary
strings, M consists of an enumeration of all possible self-delimiting programs for
a preselected arbitrary universal Turing machine U.> Let x be an arbitrary bit
string. The shortest program that produces x on U is z* = argminyem (U(M) =
z) and the Kolmogorov complexity of x is C(x) = |z*|. The conditional Kol-
mogorov complexity of a string x given a string y is C(x|y), this can be inter-
preted as the length of a program for x given input y. A string is defined to be
random if C(x) > |z|.

This makes M one of the most general model classes with a number of very
desirable properties: it is universal since all possible programs are enumerated,
because the programs are self-delimiting we can concatenate programs at will,
in order to create complex objects out of simple ones we can define an a-priori
complexity and probability for binary strings. There are also some less desirable
properties: C(z) cannot be computed (but it can be approximated) and C(x) is
asymptotic, i.e. since it is defined relative to an arbitrary Turing machine U it
makes less sense for objects of a size that is close to the size of the definition of
U. Details can be checked in [32].

In this paper I will often use the notions of typicality and incompressibility
of elements of a set, e.g. in those cases where I state that the vast majority of
elements of a set have a certain quality. This might at first sight sound a bit
inaccurate. To show that this notion actually has an exact definition I give the
following theorem (without proof) due to Li and Vitdnyi [32] pg. 109):

Theorem 1. Let ¢ be a positive integer. For each fized y, every finite set A of
cardinality m has at least m(1 —27°) + 1 elements x with C(x|y) > logm — c.

This shows that in the limit the number of elements of a set that have low
Kolmogorov complexity is a vanishing fraction. In the limit a typical element of
a set is a random element. In general the vast majority of elements of a set is
not compressible. One of the problems with Kolmogorov complexity is that it
specifies the length of a program but tells us nothing about the time complexity
of the computation involved.

3.1 Randomness deficiency and minimum description length

It is important to note that objects that are non-random are very rare. To make
this more specific: in the limit the density of compressible strings = in the set
{0,1}=* for which we have C(z) < |z| is zero [32]. The overwhelming majority
of strings is random. In different words: an element is typical for a data set if
and only if it is random in this data set. In yet different words: if it has maximal
entropy in the data set. This insight allows us to formulate a theory independent
measure for the quality of models: randomness deficiency.

® Here the notational conventions of two disciplines clash. U is the internal energy of
a system U(z) is the Universal Turing machine with input z. Which interpretation
is meant should be clear from the context.



We start by giving some estimates for upper-bounds of conditional complex-
ity. Let x € M be a string in a finite set M then

C(a|M) < log| M|+ O(1) (6)

i.e. if we know the set M then we only have to specify an index of size log |M |
to identify x in M. Consequently:

C(x) < C(M)+log| M|+ O(1) (7

The factor O(1) is needed for additional information to reconstruct 2 from M and
the index. Its importance is thus limited for larger data sets. These definitions
motivate the famous Kolmogorov structure function:

he(a) = mSin{log|S| :x €5,C(S) <a} (8)

Here a limits the complexity of the model class S that we construct in order
to ’explain’ an object x that is identified by an index in S. ¢ Let D C M be a
subset of a finite model M. We specify d = |D| and m = |M|. Now we have:

C(D|M, d) < log (Zl) +0(1) 9)

Here the term (';‘) specifies the size of the class of possible selections of d elements
out of a set of m elements. The term log (") gives the length of an index for this
set. If we know M and d then this index allows us to reconstruct D.

A crucial insight is that the inequalities 6 and 9 become ’close’ to equalities
when respectively x and D are typical for M, i.e. when they are random in M.
This typicality can be interpreted as a measure for the goodness of fit of the
model M. A model M for a data set D is optimal if D is random in M, i.e. the
randomness deficiency of D in M is minimal. The following definitions formulate
this intuition. The randomness deficiency of D in M is defined by:

§(D|M, d) = log (g) — C(D|M, d), (10)

for D C M, and oo otherwise. If the randomness deficiency is close to 0, then
there are no simple special properties that single D out from the majority of
data samples to be drawn from M.

The minimal randomness deficiency function is

Be(a) = Bp(e) = min{d(D|M) : M 2 D, C(M) < a}, (11)

If the randomness deficiency is minimal then the data set is typical for the
theory and, with high probability, future data sets will share the same character-
istics, i.e. minimal randomness deficiency is also a good measure for the future
performance of models. For a formal proof of this intuition, see [31].

6 This a could be seen as a factor that limits the resolution of the camera in figure 1.



Kolmogorov complexity thus is useful in the context of the socalled Minimum
Description Length Principle (MDL). We give the traditional formulation of
MDL [24; 6]:

Definition 2. The Minimum Description Length principle: The best the-
ory to explain a set of data is the one which minimizes the sum of

— the length, in bits, of the description of the theory and
— the length, in bits, of the data when encoded with the help of the theory

If D is a data set then the 'best’ model My,;py, to explain D is given by:
argminpyepm — log P(M) —log P(D|M) =

argminpre mC (M) + C(D|M) = Muypr, (12)

Under this interpretation of M, the length of the optimal code for an object
is equivalent to its Kolmogorov complexity. This specific formulation is also
known as two-part code optimization. It is important to note that two part
code optimization is a specific application of MDL. The majority of work on
MDL is closer in spirit to the statistical than to the Kolmogorov complexity
world ([18]). Rather than two-part codes, one uses general universal codes for
individual sequences; two-part codes are only a special case.

The formula argminyre pm — log P(M) —log P(D|M) indicates that a model
that generates an optimal data compression (i.e. the shortest code) is also the
best model. This is true even if M does not contain the original intended model
as was proved by [31]. It also suggests that compression algorithms can be used
to approximate an optimal solution in terms of successive steps of incremental
compression of the data set D. Equation 12 gives the length of the optimal two-
part-code. The length of the two-part-code of an intermediate model M; is given
by:

A(M; d) = log (”;) +C(My) > (D) - O(1) (13)

This equation suggests that the optimal solution for a learning problem can be
approximated using an incremental compression approach. This is indeed what
a lot of learning algorithms seem to be doing: find a lossy compression of the
data set by means of finding regularities. This holds for such diverse approaches
as nearest neighbor search, decision tree induction, induction of association rules
and neural networks. There is a caveat however; Adriaans and Vitdnyi [4] have
shown that the randomness deficiency not necessarily decreases with the length
of the MDL code, i.e. shorter code does not always give smaller randomness
deficiency, e.g. a better theory. This leads to the following observations:

— The optimal compression of a data set in terms of the model- and a data-
to-model code always gives the best model approximation ”irrespective of
whether the ’true’ model is in the model class considered or not” [31]".

" This is true only in this specific computational framework of reference. In a proba-
bilistic context, both for Bayesian and MDL inference, the assumption that the true



— This optimal compression cannot be computed.
— Shorter code does not, necessarily mean a better model.

These observations show that the naive use of the MDL principle is quite risky.
Learning by means of incremental compression might lead to a model that is
worse then the one we started with.

3.2 Kolmogorov complexity meets thermodynamics

The mathematical relation between thermodynamic entropy and Kolmogorov
complexity is rather straightforward while the philosophical implications are
quite formidable. The expression for the Gibbs entropy in thermodynamics is:

S==> pilnp
i

The corresponding definition for Shannon entropy is:
H=-Y pilog,pi
i

P2

According to Bais and Farmer: ”...this exact quantitative definition of informa-
tion and its applications transcend the limited origin and scope in conventional
thermodynamics and statistical mechanics.”[5] They consider information theory
to be more fundamental then thermodynamics.

The close connection between Shannon entropy and Kolmogorov complex-
ity is observed by, amongst others, Cover and Thomas: ”Gratifyingly, the Kol-
mogorov complexity K is approzimately equal to the Shannon entropy H if the
sequence is drawn at random from a distribution that has entropy H. So the
tie-in between information theory and Kolmogorov complexity is perfect”. ([11]
pg. 3).

The two observations together i.e. the mathematical equivalence of Shannon
entropy and Gibbs entropy and the approximate equivalence between Shannon
entropy and Kolmogorov complexity suggest a deep connection between physics
and complexity theory. A similar (but much stronger view) is expressed by Li
and Vitanyi in their standard textbook. On the basis of a somewhat different
analysis they conclude: ”... it seems reasonable to assign to each string x an
effective thermodynamic entropy equal to its complexity K(z). ([32] pg. 551).
They also discuss the relation between Shannon entropy and Gibbs entropy (pg.
564).

So let’s take the suggestion of Li and Vitanyi seriously. What happens when
we observe a dynamic system at a certain point in time and store the results in
a binary string? One would expect that there is a relation between the thermo-
dynamic qualities of the system and the mathematical qualities of the string. In

model is in the model class considered can sometimes be crucial - this also explains
why in Vapnik-Chervonenkis type approaches, complexity is penalized much more
heavily than in MDL [17] ).



this paragraph I present a theorem that stipulates a possible interpretation of
this connection. For this purpose I will assume that it makes sense to talk about
the temperature of a string:

Conjecture 1. We can assign a temperature to strings.

For the moment the reader might interpret this as either a very deep insight or a
rather surrealistic artefact of the theory. Fact is that in the proof of the central
theorem below temperature will be cancelled out against other variables. This is
what one would expect, because in our day to day experience the temperature of
data sets is irrelevant. My paradigmatic example will be that of a digital camera,
but the theorem in principle holds for a range of physical systems for which we
store observations in data sets. First let’s assume that we can observe a sytem
by means of a canonical measurement function h.

Definition 3. Suppose that X is a dynamical physical system that evolves over
time. A canonical measurement function h : ¥ — {01}° has the following prop-
erties:

— every string produced by h has the same length c., which is called the equzi-
librium complexity associated with h and

— h actually measures the entropy S of X at time t in terms of the Kolmogorov
complezity of its output: h(S) = em (C(he(X))), where ¢y, is a constant.

— Specifically C(hi(X)) = ce if X' is in equilibrium, i.e. in that case the output
of h is a random string.

A canonical measurement function brings us from the dynamic world of sys-
tems to the static world of binary data sets. Note that it is quite possible that
h is a lossy function that gives only a partial model of X'. A digital camera that
always makes pictures with equal file size is an approximation of a canonical
measurement function. The length ¢, of the binary string that is the output of
h is a measure of the maximal amount of information that can be produced.
This amount of information will, by definition, only be reached if X' is in equilib-
rium, hence the name equilibrium complexity. Note that in an equilibrium state
the system has no free energy. All internal energy is converted to work. This is
associated with a random string as output of the measurement. This motivates:

Lemma 1. h(U) = c.: the internal energy U of the system is associated with
the mazimal Kolmogorov complexity c. of the output of h.

The following theorem relates the free energy of a system with the random-
ness deficiency of the data set resulting from observations of the system:

Theorem 2. Given conjecture 1,lemma 1 and a set of canonical measurements
h: X — {0,1}° of a dynamic system X with free energy F' and constant tem-
perature we have:

hi(F) = 6(he (X))

i.e. the free energy of the system is linear in the randomness deficiency of the
data set containing the measurement.



Proof: Note that h is a function from a system X' to a set of binary strings. For
X by definition 3 we have F' = U —T'S which, under the homomorphism h gives:

hi(F) = hi(U) — ha(T)ha(S)

By conjecture 1 we stipulate that h(T) = ¢;. By lemma 1 we have that h:(U) =
ce- Definition 3 gives: h(S) = ¢ (C(h(X)))

he(F) = ce — ciem (C(he(X)))
If X is in equilibrium we have zero free energy. This gives:
ce = cem(C(he(X)))

At the same time by definition 3 we have C'(h:(X)) = ¢, for equilibrium situa-
tions. So we have ¢, — ciepce = 0, which gives:

ciem = 1

Since the temperature is constant and ¢,, is only dependent on h the corrections
for the homomorphism and the temperature cancel each other out. Consequently:

hi(F) = ¢ — C(he(X))

Here c, gives the maximal complexity of the output of h and C'(h(X)) the actual
complexity at time ¢, this amounts to:

hi(F) = 6(ht(2))

This concludes the proof of the theorem. If we collect a set of adequate
measurements of a system at time ¢ we may say that the compressibility or ran-
domness deficiency of the resulting data set reflects the free energy of the system.
If the data set is compressible then the system contains free energy. In that case
it is not in thermodynamic equilibrium and capable of performing work. One
might call theorem 2 the fundamental learnability theorem for physical systems.
It shows how learning as data compression and thermodynamics interact. Data
compression identifies systems that are not in thermal equilibrium: i.e. systems
with structure, systems with self organization, living systems etc. In real life
perfect canonical measurement systems do not exist, if only for loss of energy
because of the system being observed. Canonical measurement systems allow
us to ignore temperature in our data sets because they deliver a perfect image
of the entropy of the original system. Of course this theoretical excercise is far
from completed, but I hope that it offers a first sketch of the complex interaction
between thermodynamics and complexity theory.

4 Joule’s free expansion experiment: an example of
theorem 2

In Joule’s free expansion experiment, which is a standard textbook example,
a high pressure ideal gas streams in to an isolated vacuum chamber. This is



a adiabatic non-equilibrium process for which most of the approximations of
thermodynamics do not hold. One would expect the gas to cool down in this
process, because the temperature of vacuum is zero. Experiments show that
this is not the case: the temperature remains constant. The results from the
previous paragraph can help us to understand this. This result is in line with the
predictions of theorem 2) in the sense that the only relevant variable fluctuation
in this process is the descriptive entropy.

Suppose we have an ideal gas in continuous space, basically a set of n identi-
cal perfectly elastic snooker balls in an isolated vacuum cylinder with no gravity.
Suppose that at to the particles are all in one half of the cylinder with random
positions and velocities. This means that the system has not reached an equilib-
rium at time to. With high probability, after a certain period of time the particles
will be evenly distributed over the cylinder. Now the system X is given by the
following description:

— The exact position and velocity of every particle given in real numbers at
time zero,

— A description of Newton’s laws that regulates how the system evolves over
time.

Note that the descriptive complexity of this system X' is in principle infinite. A
randomly selected real from any non-empty interval contains infinite informa-
tion with probability 1. Now consider a homomorphism p; that takes the exact
position of each particle at time ¢ and sends it to an integer 1 < i < k associated
with a grid of k cells defined by a certain discrete coordinate system for the
cylinder. p; : ¥ — P(N) is a function from the system X to a set of integers
that is associated with the position of the balls in the cylinder at time ¢. Apart
from the infinite size of the input there is nothing tricky about this function. Any
student could write the program on the basis of a sufficiently rich approximation
of the real values in the input. To make the example complete, suppose a second
function ¢ : P(N) — {01}° that takes a set of integers S to a binary string
s of length ¢, that describes this set. Again there is nothing tricky about this
function. Any student could implement it. Finally let hy = gp; : X — {01}%,
i.e. the composition of p; and ¢q. Thus h; approximates a canonical measure-
ment function that takes the system X and produces a file with an approximate
description of the position of the particles at time t.

First I analyze this situation from the perspective of information theory. An
observer that analyzes the history of X will see an increase of the Kolmogorov
complexity of output of h to a certain level, after which it stabilizes. After
this point in time X has reached a thermodynamic equilibrium. Note that the
equilibrium complexity is dependent on the granularity of the grid used in A, i.e.
we never measure the entropy of the original system directly. It can in this case
be defined as: ¢, = C(z) = logk +logn + log (Z) + O(1). This is the equilibrium
complexity of X' with respect to h. Here the terms log k and logn are needed to
code the number of cells in the grid and the number of particles in the system
and the term log (¥) is the size of an index of the selection of n out of k cells.



If one takes the granularity to be sufficiently high one can prove the following
lemma:

Lemma 2. For all moments in time t; in which X is in equilibrium and each
discrete cell contains at most one particle the complexity of the output x of hy,
will be roughly the same with C(z) = logk + logn + log (Z) + O(1), i.e. the
equilibrium complezity.

Proof: observe that since the particles are randomly distributed over the space
the string x describes a random selection of n cells out of & possibilities, i.e. a
random selection of n integers < k . This gives the desired estimate .

Lemma 2 allows us to make the following observation: if complexity of the
output, b, is smaller than the equilibrium complexity then X is not in a state
of equilibrium at time ¢;. Specifically, when all the particles will be in one half
of the cylinder, the upperbound for the complexity of the output z will be:
C(z) < log(k/2) + logn + log ((kr/f)) + O(1), which, for large enough n, is much
smaller than the equilibrium bound.

Note that the opposite situation is possible: there are low entropy states that
are not ’sensed’ by h; e.g. the situation in which the particles are randomly
distributed over the cells, but each particle is ezactly in the middle of a cell.
These states, however, are extremely improbable. So we have gained the following
insight: if our data set is compressible below the standard equilibrium description
complexity, then the system is not in equilibrium and will have free energy. The
converse is not true. Theorem 2 gives the exact connection.

Let us analyze this example again in terms of classical thermodynamics.
This is not unproblematic because thermodynamical derivations only work under
strict equilibrium conditions that are not always met. Note, that also in the
derivation of Gibbs entropy a partition function Z is introduced to renormalize
the classes of velocities in to a sound probability distribution. Gibbs entropy is
only defined for canonical ensembles. The number of particles and the volume
are constant so two conditions for canonical ensembles are met. Others vary over
time in the example. In principle there are three different phases:

— At time t( all the particles are in one half of the cylinder with random veloc-
ities and spatial distribution. For this part of the cylinder we could calculate
the standard macroscopic variables, temperature, pressure and entropy by
considering it (somewhat erroneously) as a microcanonical ensemble with
fixed volume, number of particles and energy. The other half of the cylin-
der is empty and thus has a vacuum: the pressure, the temperature and the
entropy are all zero. One can use this separation of temperature to run a
heat engine by allowing the heat to flow from the hot side to the cold side.
The Gibbs entropy for the total cylinder is not defined because it is not in
equilibrium.

— In the second phase the atoms distribute themselves over the total space,
but no equilibrium is reached yet. In this phase the standard macroscopic
variables like temperature and pressure are not defined. The same holds for
the Gibbs entropy.



— In the last phase a state of equilibrium is reached. The Gibbs entropy as well
as temperature and pressure are well defined.

There is no exchange of energy with the environment so we have rapid adiabatic
expansion. We cannot, use the standard definition to estimate the work done
by the system, dU = T'dS — PdV, since P, V and T are not well defined for
the whole system during all the three phases. Still, internally we have heat flow
and this must be associated with a potential amount of work done by the gas.
Since the velocities of the particles do not change during the expansion, the
temperature will remain the same. The change in free energy can be explained
completely in terms of a change of entropy. Since the gas does not do any work
during the expansion the temperature remains the same. This would be different
if the gas has to push away a piston during the expansion, then the temperature
would also drop. The original free energy of the gas is completely transformed
in to entropy:

F=TdS (14)

The homomorphism h allows us to estimate the relative change of entropy.
This is associated with the relative difference between the equilibrium complexity
of the gas distributed over the whole cylinder minus the initial complexity of the
gas distributed over half of the cylinder:

h(dS) = ¢ ' (log (5) —log <k7/12> +0(1)) ~ (15)

k k/2
ce_l(/ logz dx — / logx dx + O(1))
k k

-n /2—n

The integrals in the last part of this equation nicely show that the notion
of ’volume change’ is also transferred to the information theoretical part of the
theory. This expression has to be corrected for the length of the output with a
factor ¢;! where c, is the equilibrium complexity. This is associated with the
granularity of the homomorphism h. Also A must be fine grained to such a degree
that it reflects the change in entropy of the system. In order for theorem 2) to
do its work it is not necessary to use a grid as fine as in this example (i.e. one
particle per cell). This was only introduced to make the mathematics easier.
Note that, since ¢ in h is a canonical measurement function we can estimate the
randomness deficiency of the output of h at ty:

3(hey(2)) = log (S) —log (’“é 2) +0(1) (16)

Since the temperature does not change we can consider its image to be con-
stant ¢; = h(T'). Combining this with equations 14 and 15 we get:
k/2
n

he, (F) = W(T)h(dS) = ¢¢/c.(log (S) —log ( ) +0(1)) (17)



Insertion of equation 16 gives:
hio (F) = c1/ce(8(hay (X)) (18)

This is the desired result: for canonical measurements of adiabatic processes,
with constant temperature, the free energy of the system is proportional to the
randomness deficiency of the measurements with corrections for temperature and
the granularity of the measurement. The factors ¢;/c. remain in the final result
because in this case our homomorphism A does not obey the strict conditions of
theorem 2. Information theory can help us to quantify thermodynamic variables
in situations in which some of the units are ill defined.

5 Facticity

This analysis shows that entropy and Kolmogorov complexity not necessarily
measure the interestingness of a system of a data set. All systems in the uni-
verse will eventually reach a state of maximal entropy. A system in maximal
entropy has played its part and has no interesting structure. Likewise, although
a random string z contains in a way the maximum amount of information pos-
sible for a string of length |z|, it contains without any context no meaningful
information. We can not expect to learn very much about a system that is in
a state of thermodynamic equilibrium. On the other hand a string with low
complexity does not contain very much information and thus by definition it
does not contain much meaningful information. Interestingness or meaningful-
ness of a data set seems to be lying in a tension between chaos and structure.
As a first approximation of this notion I will define the idea of the facticity of
a data set. The facticity of a binary string will be maximal if C(z) = 1/2|z|.
The maximum amount of meaningful information can be measured in terms of
the what I call the normalized facticity of a string. It is the product of the
normalized entropy C(x)/Cpaz(x) and the normalized randomness deficiency
(Cmaz () — C(x))/Ciae (x). For strings this is:

C)  Jo|=Ca)

p(z) =4 (19)
|z] |z]
The factor 4 serves to secure a maximum facticity of 1. Facticity can be seen
as a normalized information density measure. For thermodynamic systems this

equation is transformed in to:

S Smax -5
X

S’max Smaa:

p(X) =4

(20)

This is the rationale behind the experiment represented in figure 1. Here I have
taken pictures of the process of mixing black and white paint. I use the facticity
score to select the most interesting picture.

One might object that my definition of facticty is arbitrary. Why select the
maximum on the balance between order and chaos? Why not 1/3 or 1/87 The



motivation lies in theorem 2 in the previous paragraph. If the data set is produced
by a canonical measurment function then we have maximal facticity in the exact
spot were the product of the free energy stored in the system and the amount
of information stored in the system is maximal. Facticity faithfully measures the
amount of useful information in a system: if facticity is high then there is a lot of
information in the system and the system has a lot of free energy to do something
with this information. Of course there is a certain arbitrariness and one could
choose another optimum. This is a form of arbitrariness that is very common in
science. We can measure temperature in degrees Celsius, Fahrenheit or Kelvin.
This is OK as long as there are clear conversions and all units of measurement
refer to the same underlying concept, in this case temperature. Here I present
facticity as an abstract formal concept with a well founded stipulative definition.
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Fig. 2. A tree representation based on the normalized compression distance between
12 Piano pieces.

The fact that state of the art data compression routines can be used to make
predictions about data sets that seem to have cognitive relevance was recently
discovered by Vitdnyi and Cilibrasi [9]. Suppose that z and y are data sets and
that we have a concatenation operation on these sets that allows us to form zy.
Let C be a general compression routine such that C(xz) is the length in bits of
data set x when compressed by C. We can now define the related Normalized
Compression Distance (NCD):

C(zy) —min{C(z),C(y)}
maz{C(z),C(y)}
Figure 2 shows that NCD seems to be able to identify style connections

between different piano pieces. NCD seems to work well for data sets that have

NCD(z,y) = (21)



a natural linear representation such as music and language. For images it seems
to work less well due to the fact that we do not have good general purpose
compression algorithms for higher dimensional data sets.

Fig. 3. Facticity scores for three well known works of art. Picasso’s Guernica scores
a maximal 1. It contains optimal meaningful information. As was to be expected,
the black square of Malewich has a low score on the interestingness scale. It contains
little information. But also Pollocks composition No. 5 has a lower score. In a way, it
contains 'too much’ information to be interesting. Note that people always speak about
‘the drippings’ of Pollock. Apparently it is difficult to keep these high entropy images
apart. The facticity scores were calculated in the same way as in figure 1. These works
of art typically represent the period of crises in painting in the 20th century in which
painters were trying to redefine the conceptual space of their art.

5.1 Factic processes and factic data sets

The facticity is optimal if the balance between order and chaos is optimal. Fac-
ticity is partly motivated by insights from thermodynamics, but can also be



introduced via other constructions. Facticity in a dynamic setting can be seen as
a rule breaking concept. Functions that follow and break rules with some regu-
larity create data sets with high facticity. Suppose we want to construct a binary
string of k bits with maximum facticity, i.e. C'(z) = k/2. For any k of sufficient
size, strings with near optimal facticity exist in abundancy: just concatenate a
low complexity string of length of ca. k/2+1logk/2+ O(1) to a random string of
length ca. k/2 —logk/2 — O(1), where the term log k/2 serves to code the length
and O(1) serves to concatenate the first part to the second part. This gives at
least 2k/2-1ogk/2=0(1) gtrings with basic near optimal facticity and there are
many more. We are interested in processes that create facticity. The following
definition is useful:

Definition 4. An incremental information creation process is called factic if
it maintains constant facticity of the total generated data set.

We call data sets with high facticity also factic. Note that in order for a process
to be factic it must have access to an unlimited source of new information during
its execution. In general, factic processes seem to be the result of two conflicting
functions: one generating function that is an unlimited source of new information
and a constraining function that regulates the production of information. Note
that although factic data sets exist in abundance there is no recursive routine
that can construct them since the Kolmogorov complexity needed to judge the
faciticity score can not be computed. Another way to say the same thing is that
recursive routines can not create new information fast enough to sustain facticity:
recursion is not factic. Data sets that are factic with high probability can easily
be approximated by computational routines that use a random generator as
generating function and a standard data compression function as constraining
function. There is an abundance of examples of factic processes:

— Evolutionary processes are in general factic. Here mutation is the information
generating function and the environment that regulates survival serves as a
constraining function.

— A cooperative teacher (See [3]). If we have a learning agent with limited
computational resources (the constraining function) a cooperative teacher
(the generation function) would follow a strategy of selecting simple exam-
ples that allow the ’pupil’ to compress the examples in to rules with relative
ease. When the pupil has digested the simple examples the teacher can shift
to more complex ones. Thus the complexity of the examples increases mono-
tonically. The teacher will select his examples in a narrow band between
what the pupil already knows (order) and what is too complex to process
(subjective chaos).

— Curiosity driven ’creative’ agents as proposed by Schmidhuber (See [29]).
Under assumption that the general capacity to learn gives an evolutionary
benefit, we expect learning agents that are the product of evolution to have
some mechanism that drives them to select new examples that are opti-
mal given their current theories about the structure of their environment.
Such an explanation of the evolutionary benefits of curiosity seems plausi-
ble. By the same token such a curiosity driven agent should be inclined to



ignore any low-complexity examples that are already processed as boring
and search examples that ’satisfy’ its curiosity. These are the examples that
the agent will find ’interesting’ in this stage of the learning process. Here
the search process of the agent of the generating function and the subjective
compression routine of the agent is the constraining function. One might
even interpret curiosity driven scientific heuristics as an advanced variant of
such an evolutionary survival strategy for the human race.

Let us return to our original ambition. Given a system X we collect a set
of measurements D and represent them in a string x. We are interested in an
explanation of the structure of X' and a prediction of its behavior. What do
these ambitions mean in the context of the framework that I have described? We
have seen that we should be cautious about the use of incremental compression
algorithms. Yet in the real world data compression seems to be a reasonable
inductive strategy. This amounts to the following intuitive:

Claim. The distributions we find in the world are generally benign in the sense
that time and memory bounded tests with reasonable limits for Kolmogorov
complexity are sufficient for an adequate complexity estimate.

What the memory and processing time limits would be is a problem for an other
paper, but a reasonable intuition would be that the limits lie well within the
processing capacity of the human brain. Another way of formulating the same
principle is: if a system looks like it is in thermodynamic equilibrium, with high
probability it is. This implies that data sets that look random but in fact are
highly structured, like the decimal expansion of the number 7 are highly rare
in nature. Why (and if) these data sets do not occur is not completely clear,
but a natural assumption would be that natural systems that are capable of
calculating such rich data sets are by nature instable and therefore do not exist
long enough in time.

6 Algorithmic esthetics

Recently Schmidhuber defined a notion of ’interestingness’ in a paper with the
rather ambitious title ”Simple Algorithmic Principles of Discovery, Subjective
beauty, Selective Attention, Curiosity & Creativity” [29]. Since there is a relation
with the notion of facticity it is useful to present a critical discussion of these
ideas. Although I am critical of Schidhuber’s theories, at least we seem to agree
on one point: algorithmic information theory is a useful formalism to evaluate
esthetic theories. Indeed, as we saw in the previous paragraphs, curiosity driven
agents tend to produce factic data sets. But it seems not right to equate the
notion of ’interestingness’ that can be defined for these agents with beauty.
As an algorithmic esthetics Schmidhubers conception is not satisfactory. In the
following I will argue that the notion of subjective compressibility in art is much
more complex than Schmidhuber assumes. In particular great works of art seem
to be a rich source of meaning because of the fact that they transcend our



rationality (i.e. they have high facticity in themselves and can not be compressed)
and not because they have low complexity. Beauty is not an evolutionary concept.
Artists do not try to construct simple didactic objects, they try to construct
objects that are as rich in meaning as possible, i.e. they try to optimize facticity.

Idealism Schematization
Individual portrait  Generalized Eigen Face Face schema

Fig. 4. An illustration of the complex relation between data compression and idealiza-
tion in art. The eigenface shows that a process of data compression in to a general ideal
form is an element of a certain artistic tradition. At the same time extreme realism
(very little compression) and schematization (extreme compression) exist. Note that
the portrait in the upper left is from Fayoum. It shows that individual portraits already
occured in antiquity, illustrating the a-historical character of this form of realism. The
idea that beauty has a relation with low-complexity and that the history of art shows
an evolution to objects of increasing complexity is simply denied by the facts. The
automatically constructed eigen face is due to Luis Janez Escalada and Miguel Angel
Castellanos of the University of Madrid.

At first sight the idea of low complexity art seems to fit nicely with some
predominant themes of western philosophy dating back to ancient Greek thought:
1) the Platonic identification of beauty and truth and 2) the identification of
truth with simplicity. In various sources from antiquity we find the notion that
truth and beauty can be reached through a process of ’idealization’ removing all
the errors and faults from a collection of similar objects.® The fact that there
are philosophers that defend those ideas does not imply that they describe what
artists actually do. Figure 4 shows that the reality is much more complex. Artists

8 See e.g. Xenophon, Memorabilia ITI. This actually shows that the notion of data
compression as a process of idealization that approximates some form of truth is
much older than Occam. MDL as a scientific methodology has its roots in Greek
thought.



certainly use compression, but not in such a way that beauty can in general be
identified with low-complexity. The following variants seem to occur:

Realism: the representation is isomorphic to the data.

Idealization: ideal schemas optimally compress the description of a set of
examples with errors.

— Schematization: optimal compression under bounded complexity.

— Characterization: optimal bounded compression of an individual example
conditional to the optimal general theory.

What is more, all these variants occur side by side throughout history. There
is no development from simple to more complex art as would be predicted by
Schmidhuber’s theory. Especially Plato’s identification of truth and beauty that
fits so nicely with the concept of a curiosity driven notion of evolutionary beauty
should be regarded with suspicion. In the end artists were banned from Plato’s
ideal state. Artists do not follow rules, they break them.

Fig. 5. Left, a picture of a regular schematic feminine face due to Schmidhuber [27].
In the middle, a detail of a copy of the Mona Lisa by Leonardo’s untalented protegé
Salai. On the right a scheme for a childs head based on an arrangement of four circles
in a square due to Fioletti (1608). The last image shows that construction of faces
according to simple geometrical schemes was an element of artistical training in the
Renaissance. It is clear from the plain look of Salai’s painting, which conveys nothing
of the fascination of the original, that great works of art are difficult to copy, i.e. they
have a meaning that can not be captured by simple geometrical schemas. This supports
the view that great works of art optimize facticity and can not be compressed in to
low-complexity data sets.

The world of art and science have different rhetorical models. An artist com-
municates directly with his audience through his products. If the essential quality
of a work of art could be described adequately in language then the work of art
would be nothing but an illustration of the text, and thus stop to be an inde-
pendent work of art. From this perspective any attempt to formulate a scientific
theory explaining what beauty is or prescribing what human beings should or



would find beautiful is doomed to fail. Books and theories by authors like Ra-
machandran [26] and Schmidhuber [29] present us with hypothetical models of
the human mind and then try to define beauty or creativity in terms of these
models. Such an excercise may give us deep insights, it does not change the fact
that beauty transcends the tools of science.

7 Conclusions and further work

In this paper I studied the notion of meaningful information. I showed that this
notion is intricately connected with the idea of learning by compression. I intro-
duced the concept of facticity as a first approximation of meaningful information.
I studied data compression in the context of thermodynamics and I showed that,
under adequate measurement conditions, the randomness deficiency of a data set
is associated with the free energy in the data set.

Note that systems in thermodynamical equilibrium have no significant de-
velopment in time. Reducing the description of these systems to random two
part-codes compresses the description of the system to those elements that are
time invariant. That is why such descriptions can be used to predict the future
of the system.

There are a number of ways in which this research could be expanded. Firstly
there is the issue of developing good complexity estimates for specific problem
classes, so that MDL approaches can be used. I have given initial reports for DFA
induction but much improvement is possible [1]. Another direction of research
is a deeper analysis of the distributions that I suppose are essential for our
capabilities to analyze the world around us. Another interesting exercise could
be a further embedding of these insights in the history of philosophy.

Interestingly the claims of the role of facticity in art I have defended here
seem to be open for empirical testing (and thus to plain Popperian falsification).
This is due to the fact that Cilibrasi’s Normal Compression Distance seems
to measure cognitive relevant aspects of music represented as midi files. The
need felt by composers to strech the limits of consonancy and counterpoint at a
certain point in history, should be measurable as an impossibility to come up with
interesting original melodies given enough Midi representations of melodies up to
that moment. Secondly, given the current status of fMRI technology it is possible
to present melodies with various variantions in complexity and facticity and to
study invariants in representation in the brain. Normal compression distance
seems not to be able to measure cognitive relevant aspect of images but at this
moment comparable fMRI and PET-scan studies are done measuring the brain’s
reaction to images with various Weibull and non-Weibull distributions that have
a relation with facticity [16]. Even if the creation of real art will remain a miracle
for ever, we are bound to get a much deeper insight in the ’innate’ probability
distributions that our brain uses to analyse and predict the world around us.
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