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Philosophy of Information deals with the philosophical analysis of the
notion of information both from a historical and a systematic perspective.
With the emergence of the empiricist theory of knowledge in early modern
philosophy, the development of various mathematical theories of
information in the twentieth century and the rise of information
technology, the concept of “information” has conquered a central place in
the sciences and in society. This interest also led to the emergence of a
separate branch of philosophy that analyzes information in all its guises
(Adriaans & van Benthem 2008a,b; Lenski 2010; Floridi 2002, 2011).
Information has become a central category in both the sciences and the
humanities and the reflection on information influences a broad range of
philosophical disciplines varying from logic (Dretske 1981; van Benthem
& van Rooij 2003; van Benthem 2006, see the entry on logic and
information), epistemology (Simondon 1989) to ethics (Floridi 1999) and
esthetics (Schmidhuber 1997a; Adriaans 2008) to ontology (Zuse 1969;
Wheeler 1990; Schmidhuber 1997b; Wolfram 2002; Hutter 2010).

There is no consensus about the exact nature of the field of philosophy of
information. Several authors have proposed a more or less coherent
philosophy of information as an attempt to rethink philosophy from a new
perspective: e.g., quantum physics (Mugur-Schächter 2002, see the entry
on semantic conceptions of information), logic (Brenner 2008), semantic
information (Floridi 2011; Adams & de Moraes 2016), communication
and message systems (Capurro & Holgate 2011) and meta-philosophy
(Wu 2010, 2016). Others (Adriaans & van Benthem 2008a; Lenski 2010)
see it more as a technical discipline with deep roots in the history of
philosophy and consequences for various disciplines like methodology,
epistemology and ethics. Whatever one’s interpretation of the nature of
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philosophy of information is, it seems to imply an ambitious research
program consisting of many sub-projects varying from the reinterpretation
of the history of philosophy in the context of modern theories of
information, to an in depth analysis of the role of information in science,
the humanities and society as a whole.

The term “information” in colloquial speech is currently predominantly
used as an abstract mass-noun used to denote any amount of data, code or
text that is stored, sent, received or manipulated in any medium. The
detailed history of both the term “information” and the various concepts
that come with it is complex and for the larger part still has to be written
(Seiffert 1968; Schnelle 1976; Capurro 1978, 2009; Capurro & Hjørland
2003). The exact meaning of the term “information” varies in different
philosophical traditions and its colloquial use varies geographically and
over different pragmatic contexts. Although an analysis of the notion of
information has been a theme in Western philosophy from its early
inception, the explicit analysis of information as a philosophical concept is
recent, and dates back to the second half of the twentieth century. At this
moment it is clear that information is a pivotal concept in the sciences and
humanities and in our every day life. Everything we know about the world
is based on information we received or gathered and every science in
principle deals with information. There is a network of related concepts of
information, with roots in various disciplines like physics, mathematics,
logic, biology, economy and epistemology. All these notions cluster
around two central properties:

Information is extensive. Central is the concept of additivity: the
combination of two independent datasets with the same amount of
information contains twice as much information as the separate
individual datasets. The notion of extensiveness emerges naturally in
our interactions with the world around us when we count and measure
objects and structures. Basic conceptions of more abstract
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mathematical entities, like sets, multisets and sequences, were
developed early in history on the basis of structural rules for the
manipulation of symbols (Schmandt-Besserat 1992). The
mathematical formalisation of extensiveness in terms of the log
function took place in the context of research in to thermodynamics in
the nineteenth (Boltzmann 1866) and early twentieth century (Gibbs
1906). When coded in terms of more advanced multi-dimensional
numbers systems (complex numbers, quaternions, octonions) the
concept of extensiveness generalizes in to more subtle notions of
additivity that do not meet our everyday intuitions. Yet they play an
important role in recent developments of information theory based on
quantum physics (Von Neumann 1932; Redei & Stöltzner 2001, see
entry on quantum entanglement and information).

Information reduces uncertainty. The amount of information we get
grows linearly with the amount by which it reduces our uncertainty
until the moment that we have received all possible information and
the amount of uncertainty is zero. The relation between uncertainty
and information was probably first formulated by the empiricists
(Locke 1689; Hume 1748). Hume explicitly observes that a choice
from a larger selection of possibilities gives more information. This
observation reached its canonical mathematical formulation in the
function proposed by Hartley (1928) that defines the amount of
information we get when we select an element from a finite set. The
only mathematical function that unifies these two intuitions about
extensiveness and probability is the one that defines the information in
terms of the negative log of the probability: 
(Shannon 1948; Shannon & Weaver 1949, Rényi 1961).

The elegance of this formula however does not shield us from the
conceptual problems it harbors. In the twentieth century various proposals
for formalization of concepts of information were made:

I(A) = − log P(A)
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Qualitative Theories of Information
1. Semantic Information: Bar-Hillel and Carnap developed a

theory of semantic Information (1953). Floridi (2002, 2003,
2011) defines semantic information as well-formed, meaningful
and truthful data. Formal entropy based definitions of
information (Fisher, Shannon, Quantum, Kolmogorov) work on
a more general level and do not necessarily measure information
in meaningful truthful datasets, although one might defend the
view that in order to be measurable the data must be well-
formed (for a discussion see section 6.6 on Semantic
Information). Semantic information is close to our everyday
naive notion of information as something that is conveyed by
true statements about the world.

2. Information as a state of an agent: the formal logical
treatment of notions like knowledge and belief was initiated by
Hintikka (1962, 1973). Dretske (1981) and van Benthem & van
Rooij (2003) studied these notions in the context of information
theory, cf. van Rooij (2004***not in bib*) on questions and
answers, or Parikh & Ramanujam (2003) on general messaging.
Also Dunn seems to have this notion in mind when he defines
information as “what is left of knowledge when one takes away
believe, justification and truth” (Dunn 2001: 423; 2008). Vigo
proposed a Structure-Sensitive Theory of Information based on
the complexity of concept acquisition by agents (Vigo 2011,
2012).

Quantitative Theories of Information
1. Nyquist’s function: Nyquist (1924) was probably the first to

express the amount of “intelligence” that could be transmitted
given a certain line speed of a telegraph systems in terms of a
log function: , where W is the speed of
transmission, K is a constant, and m are the different voltage

W = k log m
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levels one can choose from.
2. Fisher information: the amount of information that an

observable random variable X carries about an unknown
parameter  upon which the probability of X depends (Fisher
1925).

3. The Hartley function: (Hartley 1928, Rényi 1961, Vigo 2012).
The amount of information we get when we select an element
from a finite set S under uniform distribution is the logarithm of
the cardinality of that set.

4. Shannon information: the entropy, H, of a discrete random
variable X is a measure of the amount of uncertainty associated
with the value of X (Shannon 1948; Shannon & Weaver 1949).

5. Kolmogorov complexity: the information in a binary string x is
the length of the shortest program p that produces x on a
reference universal Turing machine U (Turing 1937; Solomonoff
1960, 1964a,b, 1997; Kolmogorov 1965; Chaitin 1969, 1987).

6. Entropy measures in Physics: Although they are not in all
cases strictly measures of information, the different notions of
entropy defined in physics are closely related to corresponding
concepts of information. We mention Boltzmann Entropy
(Boltzmann, 1866) closely related to the Hartley Function
(Hartley 1928), Gibbs Entropy (Gibbs 1906) formally equivalent
to Shannon entropy and various generalizations like Tsallis
Entropy (Tsallis 1988) and Rényi Entropy (Rényi 1961).

7. Quantum Information: The qubit is a generalization of the
classical bit and is described by a quantum state in a two-state
quantum-mechanical system, which is formally equivalent to a
two-dimensional vector space over the complex numbers (Von
Neumann 1932; Redei & Stöltzner 2001).

Until recently the possibility of a unification of these theories was
generally doubted (Adriaans & van Benthem 2008a), but after two

θ
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decades of research, perspectives for unification seem better.

The contours of a unified concept of information emerges along the
following lines:

Philosophy of information is a sub-discipline of philosophy,
intricately related to the philosophy of logic and mathematics.
Philosophy of semantic information (Floridi 2011, D’Alfonso 2012,
Adams & de Moraes, 2016) again is a sub-discipline of philosophy of
information (see the informational map in the entry on semantic
conceptions of information). From this perspective philosophy of
information is interested in the investigation of the subject at the most
general level: data, well-formed data, environmental data etc.
Philosophy of semantic information adds the dimensions of meaning
and truthfulness. It is possible to interpret quantitative theories of
information in the framework of a philosophy of semantic
information (see section 6.5 for an in-depth discussion).
Various quantitative concepts of information are associated with
different narratives (counting, receiving messages, gathering
information, computing) rooted in the same basic mathematical
framework. Many problems in philosophy of information center
around related problems in philosophy of mathematics. Conversions
and reductions between various formal models have been studied
(Cover & Thomas 2006; Grünwald & Vitányi 2008; Bais & Farmer
2008). The situation that seems to emerge is not unlike the concept of
energy: there are various formal sub-theories about energy (kinetic,
potential, electrical, chemical, nuclear) with well-defined
transformations between them. Apart from that, the term “energy” is
used loosely in colloquial speech.
Agent based concepts of information emerge naturally when we
extend our interest from simple measurement and symbol
manipulation to the more complex paradigm of an agent with
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knowledge, beliefs, intentions and freedom of choice. They are
associated with the deployment of other concepts of information.

The emergence of a coherent theory to measure information quantitatively
in the twentieth century is closely related to the development of the theory
of computing. Central in this context are the notions of Universality,
Turing equivalence and Invariance: because the concept of a Turing
system defines the notion of a universal programmable computer, all
universal models of computation seem to have the same power. This
implies that all possible measures of information definable for universal
models of computation (Recursive Functions, Turing Machine, Lambda
Calculus etc.) are asymptotically invariant. This gives a perspective on a
unified theory of information that might dominate the research program
for the years to come.

1. Information in Colloquial Speech
2. History of the Term and the Concept of Information

2.1 Classical Philosophy
2.2 Medieval Philosophy
2.3 Modern Philosophy
2.4 Historical Development of the Meaning of the Term
“Information”

3. Building Blocks of Modern Theories of Information
3.1 Languages
3.2 Optimal Codes
3.3 Numbers
3.4 Physics

4. Developments in Philosophy of Information
4.1 Popper: Information as Degree of Falsifiability
4.2 Shannon: Information Defined in Terms of Probability
4.3 Solomonoff, Kolmogorov, Chaitin: Information as the
Length of a Program

Pieter Adriaans

Winter 2018 Edition 7



5. Systematic Considerations
5.1 Philosophy of Information as An Extension of Philosophy of
Mathematics

5.1.1 Information as a natural phenomenon
5.1.2 Symbol manipulation and extensiveness: sets,
multisets and strings
5.1.3 Sets and numbers
5.1.4 Measuring information in numbers
5.1.5 Measuring information and probabilities in sets of
numbers
5.1.6 Perspectives for unification
5.1.7 Information processing and the flow of information
5.1.8 Information, primes, and factors
5.1.9 Incompleteness of arithmetic

5.2 Information and Symbolic Computation
5.2.1 Turing machines
5.2.2 Universality and invariance

5.3 Quantum Information and Beyond
6. Anomalies, Paradoxes, and Problems

6.1 The Paradox of Systematic Search
6.2 Effective Search in Finite Sets
6.3 The P versus NP Problem, Descriptive Complexity Versus
Time Complexity
6.4 Model Selection and Data Compression
6.5 Determinism and Thermodynamics
6.6 Logic and Semantic Information
6.7 Meaning and Computation

7. Conclusion
Bibliography
Academic Tools
Other Internet Resources
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Related Entries

1. Information in Colloquial Speech

The lack of preciseness and the universal usefulness of the term
“information” go hand in hand. In our society, in which we explore reality
by means of instruments and installations of ever increasing complexity
(telescopes, cyclotrons) and communicate via more advanced media
(newspapers, radio, television, SMS, the Internet), it is useful to have an
abstract mass-noun for the “stuff” that is created by the instruments and
that “flows” through these media. Historically this general meaning
emerged rather late and seems to be associated with the rise of mass media
and intelligence agencies (Devlin & Rosenberg 2008; Adriaans & van
Benthem 2008b).

In present colloquial speech the term information is used in various
loosely defined and often even conflicting ways. Most people, for instance,
would consider the following inference prima facie to be valid:

If I get the information that p then I know that p.

The same people would probably have no problems with the statement
that “Secret services sometimes distribute false information”, or with the
sentence “The information provided by the witnesses of the accident was
vague and conflicting”. The first statement implies that information
necessarily is true, while the other statements allow for the possibility that
information is false, conflicting and vague. In everyday communication
these inconsistencies do not seem to create great trouble and in general it
is clear from the pragmatic context what type of information is designated.
These examples suffice to argue that references to our intuitions as
speakers of the English language are of little help in the development of a
rigorous philosophical theory of information. There seems to be no

Pieter Adriaans
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pragmatic pressure in everyday communication to converge to a more
exact definition of the notion of information.

2. History of the Term and the Concept of
Information

Until the second half of the twentieth century almost no modern
philosopher considered “information” to be an important philosophical
concept. The term has no lemma in the well-known encyclopedia of
Edwards (1967) and is not mentioned in Windelband (1903). In this
context the interest in “Philosophy of Information” is a recent
development. Yet, with hindsight from the perspective of a history of
ideas, reflection on the notion of “information” has been a predominant
theme in the history of philosophy. The reconstruction of this history is
relevant for the study of information.

A problem with any “history of ideas” approach is the validation of the
underlying assumption that the concept one is studying has indeed
continuity over the history of philosophy. In the case of the historical
analysis of information one might ask whether the concept of “informatio”
discussed by Augustine has any connection to Shannon information, other
than a resemblance of the terms. At the same time one might ask whether
Locke’s “historical, plain method” is an important contribution to the
emergence of the modern concept of information although in his writings
Locke hardly uses the term “information” in a technical sense. As is
shown below, there is a conglomerate of ideas involving a notion of
information that has developed from antiquity till recent times, but further
study of the history of the concept of information is necessary.

An important recurring theme in the early philosophical analysis of
knowledge is the paradigm of manipulating a piece of wax: either by
simply deforming it, by imprinting a signet ring in it or by writing
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characters on it. The fact that wax can take different shapes and secondary
qualities (temperature, smell, touch) while the volume (extension) stays
the same, make it a rich source of analogies, natural to Greek, Roman and
medieval culture, where wax was used both for sculpture, writing (wax
tablets) and encaustic painting. One finds this topic in writings of such
diverse authors as Democritus, Plato, Aristotle, Theophrastus, Cicero,
Augustine, Avicenna, Duns Scotus, Aquinas, Descartes and Locke.

2.1 Classical Philosophy

In classical philosophy “information” was a technical notion associated
with a theory of knowledge and ontology that originated in Plato’s (427–
347 BCE) theory of forms, developed in a number of his dialogues
(Phaedo, Phaedrus, Symposium, Timaeus, Republic). Various imperfect
individual horses in the physical world could be identified as horses,
because they participated in the static atemporal and aspatial idea of
“horseness” in the world of ideas or forms. When later authors like Cicero
(106–43 BCE) and Augustine (354–430 CE) discussed Platonic concepts
in Latin they used the terms informare and informatio as a translation for
technical Greek terms like eidos (essence), idea (idea), typos (type),
morphe (form) and prolepsis (representation). The root “form” still is
recognizable in the word in-form-ation (Capurro & Hjørland 2003).
Plato’s theory of forms was an attempt to formulate a solution for various
philosophical problems: the theory of forms mediates between a static
(Parmenides, ca. 450 BCE) and a dynamic (Herakleitos, ca. 535–475
BCE) ontological conception of reality and it offers a model to the study
of the theory of human knowledge. According to Theophrastus (371–287
BCE) the analogy of the wax tablet goes back to Democritos (ca. 460–
380/370 BCE) (De Sensibus 50). In the Theaetetus (191c,d) Plato
compares the function of our memory with a wax tablet in which our
perceptions and thoughts are imprinted like a signet ring stamps
impressions in wax. Note that the metaphor of imprinting symbols in wax

Pieter Adriaans
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is essentially spatial (extensive) and can not easily be reconciled with the
aspatial interpretation of ideas supported by Plato.

One gets a picture of the role the notion of “form” plays in classical
methodology if one considers Aristotle’s (384–322 BCE) doctrine of the
four causes. In Aristotelian methodology understanding an object implied
understanding four different aspects of it:

Material Cause:: that as the result of whose presence something
comes into being—e.g., the bronze of a statue and the silver of a cup,
and the classes which contain these

Formal Cause:: the form or pattern; that is, the essential formula and
the classes which contain it—e.g., the ratio 2:1 and number in general
is the cause of the octave-and the parts of the formula.

Efficient Cause:: the source of the first beginning of change or rest;
e.g., the man who plans is a cause, and the father is the cause of the
child, and in general that which produces is the cause of that which is
produced, and that which changes of that which is changed.

Final Cause:: the same as “end”; i.e., the final cause; e.g., as the
“end” of walking is health. For why does a man walk? “To be
healthy”, we say, and by saying this we consider that we have supplied
the cause. (Aristotle, Metaphysics 1013a)

Note that Aristotle, who rejects Plato’s theory of forms as atemporal
aspatial entities, still uses “form” as a technical concept. This passage
states that knowing the form or structure of an object, i.e., the information,
is a necessary condition for understanding it. In this sense information is a
crucial aspect of classical epistemology.

Information
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The fact that the ratio 2:1 is cited as an example also illustrates the deep
connection between the notion of forms and the idea that the world was
governed by mathematical principles. Plato believed under influence of an
older Pythagorean (Pythagoras 572–ca. 500 BCE) tradition that
“everything that emerges and happens in the world” could be measured by
means of numbers (Politicus 285a). On various occasions Aristotle
mentions the fact that Plato associated ideas with numbers (Vogel 1968:
139***1974 a separate edition?*). Although formal mathematical theories
about information only emerged in the twentieth century, and one has to be
careful not to interpret the Greek notion of a number in any modern sense,
the idea that information was essentially a mathematical notion, dates back
to classical philosophy: the form of an entity was conceived as a structure
or pattern that could be described in terms of numbers. Such a form had
both an ontological and an epistemological aspect: it explains the essence
as well as the understandability of the object. The concept of information
thus from the very start of philosophical reflection was already associated
with epistemology, ontology and mathematics.

Two fundamental problems that are not explained by the classical theory
of ideas or forms are 1) the actual act of knowing an object (i.e., if I see a
horse in what way is the idea of a horse activated in my mind) and 2) the
process of thinking as manipulation of ideas. Aristotle treats these issues
in De Anime, invoking the signet-ring-impression-in-wax analogy:

By a “sense” is meant what has the power of receiving into itself
the sensible forms of things without the matter. This must be
conceived of as taking place in the way in which a piece of wax
takes on the impress of a signet-ring without the iron or gold; we
say that what produces the impression is a signet of bronze or gold,
but its particular metallic constitution makes no difference: in a
similar way the sense is affected by what is coloured or flavoured
or sounding, but it is indifferent what in each case the substance is;

Pieter Adriaans
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These passages are rich in influential ideas and can with hindsight be read
as programmatic for a philosophy of information: the process of
informatio can be conceived as the imprint of characters on a wax tablet
(tabula rasa), thinking can be analyzed in terms of manipulation of
symbols.

2.2 Medieval Philosophy

Throughout the Middle Ages the reflection on the concept of informatio is
taken up by successive thinkers. Illustrative for the Aristotelian influence
is the passage of Augustine in De Trinitate book XI. Here he analyzes
vision as an analogy for the understanding of the Trinity. There are three
aspects: the corporeal form in the outside world, the informatio by the
sense of vision, and the resulting form in the mind. For this process of
information Augustine uses the image of a signet ring making an
impression in wax (De Trinitate, XI Cap 2 par 3). Capurro (2009) observes
that this analysis can be interpreted as an early version of the technical
concept of “sending a message” in modern information theory, but the idea
is older and is a common topic in Greek thought (Plato Theaetetus 191c,d;
Aristotle De Anime, Book II, Chp. 12, Book III, Chp. 4; Theophrastus De
Sensibus 50).

what alone matters is what quality it has, i.e., in what ratio its
constituents are combined. (De Anime, Book II, Chp. 12)

Have not we already disposed of the difficulty about interaction
involving a common element, when we said that mind is in a sense
potentially whatever is thinkable, though actually it is nothing until
it has thought? What it thinks must be in it just as characters may
be said to be on a writing-tablet on which as yet nothing actually
stands written: this is exactly what happens with mind. (De Anime,
Book III, Chp. 4)
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The tabula rasa notion was later further developed in the theory of
knowledge of Avicenna (c. 980–1037 CE):

The idea of a tabula rasa development of the human mind was the topic of
a novel Hayy ibn Yaqdhan by the Arabic Andalusian philosopher Ibn
Tufail (1105–1185 CE, known as “Abubacer” or “Ebn Tophail” in the
West). This novel describes the development of an isolated child on a
deserted island. A later translation in Latin under the title Philosophus
Autodidactus (1761) influenced the empiricist John Locke in the
formulation of his tabula rasa doctrine.

Apart from the permanent creative tension between theology and
philosophy, medieval thought, after the rediscovery of Aristotle’s
Metaphysics in the twelfth century inspired by Arabic scholars, can be
characterized as an elaborate and subtle interpretation and development of,
mainly Aristotelian, classical theory. Reflection on the notion of
informatio is taken up, under influence of Avicenna, by thinkers like
Aquinas (1225–1274 CE) and Duns Scotus (1265/66–1308 CE). When
Aquinas discusses the question whether angels can interact with matter he
refers to the Aristotelian doctrine of hylomorphism (i.e., the theory that
substance consists of matter (hylo (wood), matter) and form (morphè)).
Here Aquinas translates this as the in-formation of matter (informatio
materiae) (Summa Theologiae, 1a 110 2; Capurro 2009). Duns Scotus
refers to informatio in the technical sense when he discusses Augustine’s
theory of vision in De Trinitate, XI Cap 2 par 3 (Duns Scotus, 1639, “De
imagine”, Ordinatio, I, d.3, p.3).

The human intellect at birth is rather like a tabula rasa, a pure
potentiality that is actualized through education and comes to
know. Knowledge is attained through empirical familiarity with
objects in this world from which one abstracts universal concepts.
(Sajjad 2006 [Other Internet Resources [hereafter OIR]])
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The tension that already existed in classical philosophy between Platonic
idealism(universalia ante res) and Aristotelian realism (universalia in
rebus) is recaptured as the problem of universals: do universal qualities
like “humanity” or the idea of a horse exist apart from the individual
entities that instantiate them? It is in the context of his rejection of
universals that Ockham (c. 1287–1347 CE) introduces his well-known
razor: entities should not be multiplied beyond necessity. Throughout their
writings Aquinas and Scotus use the Latin terms informatio and informare
in a technical sense, although this terminology is not used by Ockham.

2.3 Modern Philosophy

The history of the concept of information in modern philosophy is
complicated. Probably starting in the fourteenth century the term
“information” emerged in various developing European languages in the
general meaning of “education” and “inquiry”. The French historical
dictionary by Godefroy (1881) gives action de former, instruction,
enquête, science, talent as early meanings of “information”. The term was
also used explicitly for legal inquiries (Dictionnaire du Moyen Français
(1330–1500) 2015). Because of this colloquial use the term “information”
loses its association with the concept of “form” gradually and appears less
and less in a formal sense in philosophical texts.

At the end of the Middle Ages society and science are changing
fundamentally (Hazard 1935; Ong 1958; Dijksterhuis 1986). In a long
complex process the Aristotelian methodology of the four causes was
transformed to serve the needs of experimental science:

1. The Material Cause developed in to the modern notion of matter.
2. The Formal Cause was reinterpreted as geometric form in space.
3. The Efficient Cause was redefined as direct mechanical interaction

between material bodies.
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4. The Final Cause was dismissed as unscientific. Because of this,
Newton’s contemporaries had difficulty with the concept of the force
of gravity in his theory. Gravity as action at a distance seemed to be a
reintroduction of final causes.

In this changing context the analogy of the wax-impression is
reinterpreted. A proto-version of the modern concept of information as the
structure of a set or sequence of simple ideas is developed by the
empiricists, but since the technical meaning of the term “information” is
lost, this theory of knowledge is never identified as a new “theory of
information”.

The consequence of this shift in methodology is that only phenomena that
can be explained in terms of mechanical interaction between material
bodies can be studied scientifically. This implies in a modern sense: the
reduction of intensive properties to measurable extensive properties. For
Galileo this insight is programmatic:

These insights later led to the doctrine of the difference between primary
qualities (space, shape, velocity) and secondary qualities (heat, taste, color
etc.). In the context of philosophy of information Galileo’s observations on
the secondary quality of “heat” is of particular importance since they lay
the foundations for the study of thermodynamics in the nineteenth century:

To excite in us tastes, odors, and sounds I believe that nothing is
required in external bodies except shapes, numbers, and slow or
rapid movements. (Galileo 1623 [1960: ***page*])

Having shown that many sensations which are supposed to be
qualities residing in external objects have no real existence save in
us, and outside ourselves are mere names, I now say that I am
inclined to believe heat to be of this character. Those materials
which produce heat in us and make us feel warmth, which are
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A pivotal thinker in this transformation is René Descartes (1596–1650
CE). In his Meditationes, after “proving” that the matter (res extensa) and
mind (res cogitans) are different substances (i.e., forms of being existing
independently), the question of the interaction between these substances
becomes an issue. The malleability of wax is for Descartes an explicit
argument against influence of the res extensa on the res cogitans
(Meditationes II, 15). The fact that a piece of wax loses its form and other
qualities easily when heated, implies that the senses are not adequate for
the identification of objects in the world. True knowledge thus can only be
reached via “inspection of the mind”. Here the wax metaphor that for
more than 1500 years was used to explain sensory impression is used to
argue against the possibility to reach knowledge via the senses. Since the
essence of the res extensa is extension, thinking fundamentally can not be
understood as a spatial process. Descartes still uses the terms “form” and
“idea” in the original scholastic non-geometric (atemporal, aspatial) sense.
An example is the short formal proof of God’s existence in the second
answer to Mersenne in the Meditationes de Prima Philosophia

I call them “ideas” says Descartes

known by the general name of “fire,” would then be a multitude of
minute particles having certain shapes and moving with certain
velocities. (Galileo 1623 [1960: ***page*])

I use the term idea to refer to the form of any given thought,
immediate perception of which makes me aware of the thought. 
(Idea nomine intelligo cujuslibet cogitationis formam illam, per
cujus immediatam perceptionem ipsius ejusdem cogitationis
conscious sum)

only in so far as they make a difference to the mind itself when
they inform that part of the brain. 
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Because the res extensa and the res cogitans are different substances, the
act of thinking can never be emulated in space: machines can not have the
universal faculty of reason. Descartes gives two separate motivations:

The passage is relevant since it directly argues against the possibility of
artificial intelligence and it even might be interpreted as arguing against
the possibility of a universal Turing machine: reason as a universal
instrument can never be emulated in space. This conception is in
opposition to the modern concept of information which as a measurable
quantity is essentially spatial, i.e., extensive (but in a sense different from
that of Descartes).

(sed tantum quatenus mentem ipsam in illam cerebri partem
conversam informant). (Descartes, 1641, Ad Secundas Objections,
Rationes, Dei existentiam & anime distinctionem probantes, more
Geometrico dispositae.)

Of these the first is that they could never use words or other signs
arranged in such a manner as is competent to us in order to declare
our thoughts to others: (…) The second test is, that although such
machines might execute many things with equal or perhaps greater
perfection than any of us, they would, without doubt, fail in certain
others from which it could be discovered that they did not act from
knowledge, but solely from the disposition of their organs: for
while reason is an universal instrument that is alike available on
every occasion, these organs, on the contrary, need a particular
arrangement for each particular action; whence it must be morally
impossible that there should exist in any machine a diversity of
organs sufficient to enable it to act in all the occurrences of life, in
the way in which our reason enables us to act. (Discourse de la
méthode, 1647)
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Descartes does not present a new interpretation of the notions of form and
idea, but he sets the stage for a debate about the nature of ideas that
evolves around two opposite positions:

Rationalism: The Cartesian notion that ideas are innate and thus a
priori. This form of rationalism implies an interpretation of the notion
of ideas and forms as atemporal, aspatial, but complex structures i.e.,
the idea of “a horse” (i.e., with a head, body and legs). It also matches
well with the interpretation of the knowing subject as a created being
(ens creatu). God created man after his own image and thus provided
the human mind with an adequate set of ideas to understand his
creation. In this theory growth, of knowledge is a priori limited.
Creation of new ideas ex nihilo is impossible. This view is difficult to
reconcile with the concept of experimental science.

Empiricism: Concepts are constructed in the mind a posteriori on the
basis of ideas associated with sensory impressions. This doctrine
implies a new interpretation of the concept of idea as:

Here ideas are conceived as elementary building blocks of human
knowledge and reflection. This fits well with the demands of
experimental science. The downside is that the mind can never
formulate apodeictic truths about cause and effects and the essence of
observed entities, including its own identity. Human knowledge
becomes essentially probabilistic (Locke 1689: bk I, ch. 4, para 25).

Locke’s reinterpretation of the notion of idea as a “structural placeholder”
for any entity present in the mind is an essential step in the emergence of

whatsoever is the object of understanding when a man thinks
… whatever is meant by phantasm, notion, species, or
whatever it is which the mind can be employed about when
thinking. (Locke 1689, bk I, ch 1, para 8)
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the modern concept of information. Since these ideas are not involved in
the justification of apodeictic knowledge, the necessity to stress the
atemporal and aspatial nature of ideas vanishes. The construction of
concepts on the basis of a collection of elementary ideas based in sensorial
experience opens the gate to a reconstruction of knowledge as an extensive
property of an agent: more ideas implies more probable knowledge.

In the second half of the seventeenth century formal theory of probability
is developed by researchers like Pascal (1623–1662), Fermat (1601 or
1606–1665) and Christiaan Huygens (1629–1695). The work De
ratiociniis in ludo aleae of Huygens was translated in to English by John
Arbuthnot (1692). For these authors, the world was essentially
mechanistic and thus deterministic, probability was a quality of human
knowledge caused by its imperfection:

This text probably influenced Hume, who was the first to marry formal
probability theory with theory of knowledge:

It is impossible for a Die, with such determin’d force and direction,
not to fall on such determin’d side, only I don’t know the force and
direction which makes it fall on such determin’d side, and
therefore I call it Chance, wich is nothing but the want of art;…
(John Arbuthnot Of the Laws of Chance (1692), preface)

Though there be no such thing as Chance in the world; our
ignorance of the real cause of any event has the same influence on
the understanding, and begets a like species of belief or opinion.
(…) If a dye were marked with one figure or number of spots on
four sides, and with another figure or number of spots on the two
remaining sides, it would be more probable, that the former would
turn up than the latter; though, if it had a thousand sides marked in
the same manner, and only one side different, the probability
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Here knowledge about the future as a degree of belief is measured in terms
of probability, which in its turn is explained in terms of the number of
configurations a deterministic system in the world can have. The basic
building blocks of a modern theory of information are in place. With this
new concept of knowledge empiricists laid the foundation for the later
development of thermodynamics as a reduction of the secondary quality of
heat to the primary qualities of bodies.

At the same time the term “information” seems to have lost much of its
technical meaning in the writings of the empiricists so this new
development is not designated as a new interpretation of the notion of
“information”. Locke sometimes uses the phrase that our senses “inform”
us about the world and occasionally uses the word “information”.

Hume seems to use information in the same casual way when he observes:

would be much higher, and our belief or expectation of the event
more steady and secure. This process of the thought or reasoning
may seem trivial and obvious; but to those who consider it more
narrowly, it may, perhaps, afford matter for curious speculation.
(Hume 1748: Section VI, “On probability” 1)

For what information, what knowledge, carries this proposition in
it, viz. “Lead is a metal” to a man who knows the complex idea the
name lead stands for? (Locke 1689: bk IV, ch 8, para 4)

Two objects, though perfectly resembling each other, and even
appearing in the same place at different times, may be numerically
different: And as the power, by which one object produces another,
is never discoverable merely from their idea, it is evident cause and
effect are relations, of which we receive information from
experience, and not from any abstract reasoning or reflection.
(Hume 1739: Part III, section 1)
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The empiricists methodology is not without problems. The biggest issue is
that all knowledge becomes probabilistic and a posteriori. Immanuel Kant
(1724–1804) was one of the first to point out that the human mind has a
grasp of the meta-concepts of space, time and causality that itself can
never be understood as the result of a mere combination of “ideas”. What
is more, these intuitions allow us to formulate scientific insights with
certainty: i.e., the fact that the sum of the angles of a triangle in Euclidean
space is 180 degrees. This issue cannot be explained in the empirical
framework. If knowledge is created by means of combination of ideas then
there must exist an a priori synthesis of ideas in the human mind.
According to Kant, this implies that the human mind can evaluate its own
capability to formulate scientific judgments. In his Kritik der reinen
Vernunft (1781) Kant developed transcendental philosophy as an
investigation of the necessary conditions of human knowledge. Although
Kant’s transcendental program did not contribute directly to the
development of the concept of information, he did influence research in to
the foundations of mathematics and knowledge relevant for this subject in
the nineteenth and twentieth century: e.g., the work of Frege, Husserl,
Russell, Brouwer, L. Wittgenstein, Gödel, Carnap, Popper and Quine.

2.4 Historical Development of the Meaning of the Term
“Information”

The history of the term “information” is intricately related to the study of
central problems in epistemology and ontology in Western philosophy.
After a start as a technical term in classical and medieval texts the term
“information” almost vanished from the philosophical discourse in modern
philosophy, but gained popularity in colloquial speech. Gradually the term
obtained the status of an abstract mass-noun, a meaning that is orthogonal
to the classical process-oriented meaning. In this form it was picked up by
several researchers (Fisher 1925; Shannon 1948) in the twentieth century
who introduced formal methods to measure “information”. This, in its
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turn, lead to a revival of the philosophical interest in the concept of
information. This complex history seems to be one of the main reasons for
the difficulties in formulating a definition of a unified concept of
information that satisfies all our intuitions. At least three different
meanings of the word “information” are historically relevant:

“Information” as the process of being informed.
This is the oldest meaning one finds in the writings of authors like
Cicero (106–43 BCE) and Augustine (354–430 CE) and it is lost in the
modern discourse, although the association of information with
processes (i.e., computing, flowing or sending a message) still exists.
In classical philosophy one could say that when I recognize a horse as
such, then the “form” of a horse is planted in my mind. This process is
my “information” of the nature of the horse. Also the act of teaching
could be referred to as the “information” of a pupil. In the same sense
one could say that a sculptor creates a sculpture by “informing” a
piece of marble. The task of the sculptor is the “information” of the
statue (Capurro & Hjørland 2003). This process-oriented meaning
survived quite long in western European discourse: even in the
eighteenth century Robinson Crusoe could refer to the education of his
servant Friday as his “information” (Defoe 1719: 261). It is also used
in this sense by Berkeley: “I love information upon all subjects that
come in my way, and especially upon those that are most important”
(Alciphron Dialogue 1, Section 5, Paragraph 6/10, see Berkeley 1732).

“Information” as a state of an agent,
i.e., as the result of the process of being informed. If one teaches a
pupil the theorem of Pythagoras then, after this process is completed,
the student can be said to “have the information about the theorem of
Pythagoras”. In this sense the term “information” is the result of the
same suspect form of substantiation of a verb (informare 
informatio) as many other technical terms in philosophy (substance,

>

Information

24 Stanford Encyclopedia of Philosophy

consciousness, subject, object). This sort of term-formation is
notorious for the conceptual difficulties it generates. Can one derive
the fact that I “have” consciousness from the fact that I am conscious?
Can one derive the fact that I “have” information from the fact that I
have been informed? The transformation to this modern substantiated
meaning seems to have been gradual and seems to have been general
in Western Europe at least from the middle of the fifteenth century. In
the renaissance a scholar could be referred to as “a man of
information”, much in the same way as we now could say that
someone received an education (Adriaans & van Benthem 2008b;
Capurro & Hjørland 2003). In “Emma” by Jane Austen one can read:
“Mr. Martin, I suppose, is not a man of information beyond the line of
his own business. He does not read” (Austen 1815: 21).

“Information” as the disposition to inform,
i.e., as a capacity of an object to inform an agent. When the act of
teaching me Pythagoras’ theorem leaves me with information about
this theorem, it is only natural to assume that a text in which the
theorem is explained actually “contains” this information. The text has
the capacity to inform me when I read it. In the same sense, when I
have received information from a teacher, I am capable of transmitting
this information to another student. Thus information becomes
something that can be stored and measured. This last concept of
information as an abstract mass-noun has gathered wide acceptance in
modern society and has found its definitive form in the nineteenth
century, allowing Sherlock Homes to make the following observation:
“… friend Lestrade held information in his hands the value of which
he did not himself know” (“The Adventure of the Noble Bachelor”,
Conan Doyle 1892). The association with the technical philosophical
notions like “form” and “informing” has vanished from the general
consciousness although the association between information and
processes like storing, gathering, computing and teaching still exist.
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3. Building Blocks of Modern Theories of
Information

With hindsight many notions that have to do with optimal code systems,
ideal languages and the association between computing and processing
language have been recurrent themes in the philosophical reflection since
the seventeenth century.

3.1 Languages

One of the most elaborate proposals for a universal “philosophical”
language was made by bishop John Wilkins: “An Essay towards a Real
Character, and a Philosophical Language” (1668). Wilkins’ project
consisted of an elaborate system of symbols that supposedly were
associated with unambiguous concepts in reality. Proposals such as these
made philosophers sensitive to the deep connections between language
and thought. The empiricist methodology made it possible to conceive the
development of language as a system of conventional signs in terms of
associations between ideas in the human mind. The issue that currently is
known as the symbol grounding problem (how do arbitrary signs acquire
their inter-subjective meaning) was one of the most heavily debated
questions in the eighteenth century in the context of the problem of the
origin of languages. Diverse thinkers as Vico, Condillac, Rousseau,
Diderot, Herder and Haman made contributions. The central question was
whether language was given a priori (by God) or whether it was
constructed and hence an invention of man himself. Typical was the
contest issued by the Royal Prussian Academy of Sciences in 1769:

En supposant les hommes abandonnés à leurs facultés naturelles,
sont-ils en état d’inventer le langage? Et par quels moyens
parviendront-ils d’eux-mêmes à cette invention?
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The controversy raged on for over a century without any conclusion and in
1866 the Linguistic Society of Paris (Société de Linguistique de Paris)
banished the issue from its arena. [2]

Philosophically more relevant is the work of Leibniz (1646–1716) on a so-
called characteristica universalis: the notion of a universal logical
calculus that would be the perfect vehicle for scientific reasoning. A
central presupposition in Leibniz’ philosophy is that such a perfect
language of science is in principle possible because of the perfect nature of
the world as God’s creation (ratio essendi = ration cognoscendi, the origin
of being is the origin of knowing). This principle was rejected by Wolff
(1679–1754) who suggested more heuristically oriented characteristica
combinatoria (van Peursen 1987). These ideas had to wait for thinkers like
Boole (1854, An Investigation of the Laws of Thought), Frege (1879,
Begriffsschrift), Peirce (who in 1886 already suggested that electrical
circuits could be used to process logical operations) and Whitehead and
Russell (1910–1913, Principia Mathematica) to find a more fruitful
treatment.

3.2 Optimal Codes

The fact that frequencies of letters vary in a language was known since the
invention of book printing. Printers needed many more “e”s and “t”s than
“x”s or “q”s to typeset an English text. This knowledge was used
extensively to decode ciphers since the seventeenth century (Kahn 1967;
Singh 1999). In 1844 an assistant of Samuel Morse, Alfred Vail,
determined the frequency of letters used in a local newspaper in
Morristown, New Jersey, and used them to optimize Morse code. Thus the

Assuming men abandoned to their natural faculties, are they able
to invent language and by what means will they come to this
invention?[1]
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core of theory of optimal codes was already established long before
Shannon developed its mathematical foundation (Shannon 1948; Shannon
& Weaver 1949). Historically important but philosophically less relevant
are the efforts of Charles Babbage to construct computing machines
(Difference Engine in 1821, and the Analytical Engine 1834–1871) and
the attempt of Ada Lovelace (1815–1852) to design what is considered to
be the first programming language for the Analytical Engine.

3.3 Numbers

The simplest way of representing numbers is via a unary system. Here the
length of the representation of a number is equal to the size of the number
itself, i.e., the number “ten” is represented as “\\\\\\\\\\”. The classical
Roman number system is an improvement since it contains different
symbols for different orders of magnitude (one = I, ten = X, hundred = C,
thousand = M). This system has enormous drawbacks since in principle
one needs an infinite amount of symbols to code the natural numbers and
because of this the same mathematical operations (adding, multiplication
etc.) take different forms at different orders of magnitude. Around 500 CE
the number zero was invented in India. Using zero as a placeholder we can
code an infinity of numbers with a finite set of symbols (one = I, ten = 10,
hundred = 100, thousand = 1000 etc.). From a modern perspective an
infinite number of position systems is possible as long as we have 0 as a
placeholder and a finite number of other symbols. Our normal decimal
number system has ten digits “0, 1, 2, 3, 4, 5, 6, 7, 8, 9” and represents the
number two-hundred-and-fifty-five as “255”. In a binary number system
we only have the symbols “0” and “1”. Here two-hundred-and-fifty-five is
represented as “11111111”. In a hexadecimal system with 16 symbols (0,
1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f) the same number can be written as
“ff”. Note that the length of these representations differs considerable.
Using this representation, mathematical operations can be standardized
irrespective of the order of magnitude of numbers we are dealing with, i.e.,
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the possibility of a uniform algorithmic treatment of mathematical
functions (addition, subtraction, multiplication and division etc.) is
associated with such a position system.

The concept of a positional number system was brought to Europe by the
Persian mathematician al-Khwarizmi (ca. 780–ca. 850 CE). His main
work on numbers (ca. 820 CE) was translated into Latin as Liber Algebrae
et Almucabola in the twelfth century, which gave us amongst other things
the term “algebra”. Our word “algorithm” is derived from Algoritmi, the
Latin form of his name. Positional number systems simplified commercial
and scientific calculations.

In 1544 Michael Stifel introduced the concept of the exponent of a number
in Arithmetica integra (1544). Thus 8 can be written as  and 25 as .
The notion of an exponent immediately suggests the notion of a logarithm
as its inverse function: . Stifel compared the arithmetic
sequence:

in which the term 1 have a difference of 1 with the geometric sequence:

in which the terms have a ratio of 2. The exponent notation allowed him to
rewrite the values of the second table as:

which combines the two tables. This arguably was the first logarithmic
table. A more definitive and practical theory of logarithms is developed by
John Napier (1550–1617) in his main work (Napier 1614). He coined the
term logarithm (logos + arithmetic: ratio of numbers). As is clear from the
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match between arithmetic and geometric progressions, logarithms reduce
products to sums:

They also reduce divisions to differences:

and powers to products:

After publication of the logarithmic tables by Briggs (1624) this new
technique of facilitating complex calculations rapidly gained popularity.

3.4 Physics

Galileo (1623) already had suggested that the analysis of phenomena like
heat and pressure could be reduced to the study of movements of
elementary particles. Within the empirical methodology this could be
conceived as the question how the sensory experience of the secondary
quality of heat of an object or a gas could be reduced to movements of
particles. Bernoulli (Hydrodynamica published in 1738) was the first to
develop a kinetic theory of gases in which macroscopically observable
phenomena are described in terms of microstates of systems of particles
that obey the laws of Newtonian mechanics, but it was quite an intellectual
effort to come up with an adequate mathematical treatment. Clausius
(1850) made a conclusive step when he introduced the notion of the mean
free path of a particle between two collisions. This opened the way for a
statistical treatment by Maxwell who formulated his distribution in 1857,
which was the first statistical law in physics. The definitive formula that

(xy) = (x) + (y)logb logb logb

(x/y) = (x) − (y)logb logb logb

( ) = p (x)logb xp logb
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tied all notions together (and that is engraved on his tombstone, though the
actual formula is due to Planck) was developed by Boltzmann:

It describes the entropy S of a system in terms of the logarithm of the
number of possible microstates W, consistent with the observable
macroscopic states of the system, where k is the well-known Boltzmann
constant. In all its simplicity the value of this formula for modern science
can hardly be overestimated. The expression “ ” can, from the
perspective of information theory, be interpreted in various ways:

As the amount of entropy in the system.
As the length of the number needed to count all possible microstates
consistent with macroscopic observations.
As the length of an optimal index we need to identify the specific
current unknown microstate of the system, i.e., it is a measure of our
“lack of information”.
As a measure for the probability of any typical specific microstate of
the system consistent with macroscopic observations.

Thus it connects the additive nature of logarithm with the extensive
qualities of entropy, probability, typicality and information and it is a
fundamental step in the use of mathematics to analyze nature. Later Gibbs
(1906) refined the formula:

where  is the probability that the system is in the  microstate. This
formula was adopted by Shannon (1948; Shannon & Weaver 1949) to
characterize the communication entropy of a system of messages.
Although there is a close connection between the mathematical treatment

S = k log W

log W

S = − ln ,∑
i

pi pi

pi ith
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of entropy and information, the exact interpretation of this fact has been a
source of controversy ever since (Harremoës & Topsøe 2008; Bais &
Farmer 2008).

4. Developments in Philosophy of Information

The modern theories of information emerged in the middle of the
twentieth century in a specific intellectual climate in which the distance
between the sciences and parts of academic philosophy was quite big.
Some philosophers displayed a specific anti-scientific attitude: Heidegger,
“Die Wissenschaft denkt nicht.” On the other hand the philosophers from
the Wiener Kreis overtly discredited traditional philosophy as dealing with
illusionary problems (Carnap 1928). The research program of logical
positivism was a rigorous reconstruction of philosophy based on a
combination of empiricism and the recent advances in logic. It is perhaps
because of this intellectual climate that early important developments in
the theory of information took place in isolation from mainstream
philosophical reflection. A landmark is the work of Dretske in the early
eighties (Dretske 1981). Since the turn of the century, interest in
Philosophy of Information has grown considerably, largely under the
influence of the work of Luciano Floridi on semantic information. Also the
rapid theoretical development of quantum computing and the associated
notion of quantum information have had it repercussions on philosophical
reflection.

4.1 Popper: Information as Degree of Falsifiability

The research program of logical positivism of the Wiener Kreis in the first
half of the twentieth century revitalized the older project of empiricism. Its
ambition was to reconstruct scientific knowledge on the basis of direct
observations and logical relation between statements about those
observations. The old criticism of Kant on empiricism was revitalized by
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Quine (1951***which one*). Within the framework of logical positivism
induction was invalid and causation could never be established
objectively. In his Logik der Forschung (1934) Popper formulates his
well-known demarcation criterion and he positions this explicitly as a
solution to Hume’s problem of induction (Popper 1934 [1977: 42]).
Scientific theories formulated as general laws can never be verified
definitively, but they can be falsified by only one observation. This implies
that a theory is “more” scientific if it is richer and provides more
opportunity to be falsified:

This quote, in the context of Popper’s research program, shows that the
ambition to measure the amount of empirical information in scientific
theory conceived as a set of logical statements was already recognized as a
philosophical problem more than a decade before Shannon formulated his
theory of information. Popper is aware of the fact that the empirical
content of a theory is related to its falsifiability and that this in its turn has
a relation with the probability of the statements in the theory. Theories
with more empirical information are less probable. Popper distinguishes
logical probability from numerical probability (“which is employed in the
theory of games and chance, and in statistics”; Popper 1934 [1977: 119]).
In a passage that is programmatic for the later development of the concept
of information he defines the notion of logical probability:

Thus it can be said that the amount of empirical information
conveyed by a theory, or its empirical content, increases with its
degree of falsifiability. (Popper 1934 [1977: 113], emphasis in
original)

The logical probability of a statement is complementary to its
falsifiability: it increases with decreasing degree of falsifiability.
The logical probability 1 corresponds to the degree 0 of
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Popper never succeeded in formulating a good formal theory to measure
this amount of information although in later writings he suggests that
Shannon’s theory of information might be useful (Popper 1934 [1977],
404 [Appendix IX, from 1954]). These issues were later developed in
philosophy of science. Theory of conformation studies induction theory
and the way in which evidence “supports” a certain theory (Huber 2007
[OIR]). Although the work of Carnap motivated important developments
in both philosophy of science and philosophy of information the
connection between the two disciplines seems to have been lost. There is
no mention of information theory or any of the more foundational work in
philosophy of information in Kuipers (2007a), but the two disciplines
certainly have overlapping domains. (See, e.g., the discussion of the so-
called Black Ravens Paradox by Kuipers (2007b) and Rathmanner &
Hutter (2011).)

4.2 Shannon: Information Defined in Terms of Probability

In two landmark papers Shannon (1948; Shannon & Weaver 1949)
characterized the communication entropy of a system of messages A:

falsifiability and vice versa. (Popper 1934 [1977: 119], emphasis in
original)

It is possible to interpret numerical probability as applying to a
subsequence (picked out from the logical probability relation) for
which a system of measurement can be defined, on the basis of
frequency estimates. (Popper 1934 [1977: 119], emphasis in
original)

H(P) = − ∑
i∈A

pi log2 pi
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Here  is the probability of message i in A. This is exactly the formula for
Gibb’s entropy in physics. The use of base-2 logarithms ensures that the
code length is measured in bits (binary digits). It is easily seen that the
communication entropy of a system is maximal when all the messages
have equal probability and thus are typical.

The amount of information I in an individual message x is given by:

This formula, that can be interpreted as the inverse of the Boltzmann
entropy, covers a number of our basic intuitions about information:

A message x has a certain probability  between 0 and 1 of
occurring.
If  then . If we are certain to get a message it literally
contains no “news” at al. The lower the probability of the message is,
the more information it contains. A message like “The sun will rise
tomorrow” seems to contain less information than the message “Jesus
was Caesar” exactly because the second statement is much less likely
to be defended by anyone (although it can be found on the web).
If two messages x and y are unrelated then .
Information is extensive. The amount of information in two combined
messages is equal to the sum of the amount of information in the
individual messages.

Information as the negative log of the probability is the only mathematical
function that exactly fulfills these constraints (Cover & Thomas 2006).
Shannon offers a theoretical framework in which binary strings can be
interpreted as words in a (programming) language containing a certain
amount of information (see 3.1 Languages). The expression 
exactly gives the length of an optimal code for message x and as such
formalizes the old intuition that codes are more efficient when frequent

pi

I(x) = − log px

px

= 1px I(x) = 0

I(x and y) = I(x) + I(y)

− log px
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letters get shorter representations (see 3.2 Optimal codes). Logarithms as a
reduction of multiplication to addition (see 3.3 Numbers) are a natural
representation of extensive properties of systems and already as such had
been used by physicists in the nineteenth century (see 3.4 Physics).

One aspect of information that Shannon’s definition explicitly does not
cover is the actual content of the messages interpreted as propositions. So
the statement “Jesus was Caesar” and “The moon is made of green
cheese” may carry the same amount of information while their meaning is
totally different. A large part of the effort in philosophy of information has
been directed to the formulation of more semantic theories of information
(Bar-Hillel & Carnap 1953; Floridi 2002, 2003, 2011). Although
Shannon’s proposals at first were almost completely ignored by
philosophers it has in the past decennia become apparent that their impact
on philosophical issues is big. Dretske (1981) was one of the first to
analyze the philosophical implications of Shannon’s theory, but the exact
relation between various systems of logic and theory of information are
still unclear (see 3.5 Logic***not present*).

4.3 Solomonoff, Kolmogorov, Chaitin: Information as the
Length of a Program

This problem of relating a set of statements to a set of observations and
defining the corresponding probability was taken up by Carnap (1945,
1950). He distinguished two forms of probability: Probability  or “degree
of confirmation”  is a logical relation between two sentences, a
hypothesis h and a sentence e reporting a series of observations.
Statements of this type are either analytical or contradictory. The second
form, Probability  or “relative frequency”, is the statistical concept. In the
words of his student Solomonoff (1997):

1
(h; e)P1

2
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The method for assigning probabilities Carnap used, was not universal and
depended heavily on the code systems used. A general theory of induction
using Bayes’ rule can only be developed when we can assign a universal
probability to “any possible string” of symbols. In a paper in 1960
Solomonoff (1960, 1964a,b) was the first to sketch an outline of a solution
for this problem. He formulated the notion of a universal distribution:

This notion of Algorithmic Information Theory was invented
independently somewhat later separately by Kolmogorov (1965) and
Chaitin (1969). Levin (1974) developed a mathematical expression of the
universal a priori probability as a universal (that is, maximal) lower
semicomputable semimeasure M, and showed that the negative logarithm
of  coincides with the Kolmogorov complexity of x up to an additive
logarithmic term. The actual definition of the complexity measure is:

Kolmogorov complexity The algorithmic complexity of a string x is
the length  of the smallest program p that produces x when it runs
on a universal Turing machine U, noted as :

Carnap’s model of probability started with a long sequence of
symbols that was a description of the entire universe. Through his
own formal linguistic analysis, he was able to assign a priori
probabilities to any possible string of symbols that might represent
the universe.

consider the set of all possible finite strings to be programs for a
universal Turing machine U and define the probability of a string x
of symbols in terms of the length of the shortest program p that
outputs x on U.***is this a quote?*

M(x)

l(p)
U(p) = x

K(x) := {l(p), U(p) = x}min
p
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Algorithmic Information Theory (a.k.a. Kolmogorov complexity theory)
has developed into a rich field of research with a wide range of domains of
applications many of which are philosophically relevant (Li & Vitányi
1997):

It provides us with a general theory of induction. The use of Bayes’
rule allows for a modern reformulation of Ockham’s razor in terms of
Minimum Description Length (Rissanen 1978, 1989; Barron,
Rissanen, & Yu 1998; Grünwald 2007) and minimum message length
(Wallace 2005). Note that Domingos (1998) has argued against the
general validity of these principles.
It allows us to formulate probabilities and information content for
individual objects. Even individual natural numbers.
It lays the foundation for a theory of learning as data compression
(Adriaans 2007).
It gives a definition of randomness of a string in terms of
incompressibility. This in itself has led to a whole new domain of
research (Niess 2009; Downey & Hirschfeld 2010).
It allows us to formulate an objective a priori measure of the
predictive value of a theory in terms of its randomness deficiency:
i.e., the best theory is the shortest theory that makes the data look
random conditional to the theory. (Vereshchagin & Vitányi 2004).

There are also down-sides:

Algorithmic complexity is uncomputable, although it can in a lot of
practical cases be approximated and commercial compression
programs in some cases come close to the theoretical optimum
(Cilibrasi & Vitányi 2005).
Algorithmic complexity is an asymptotic measure (i.e., it gives a
value that is correct up to a constant). In some cases the value of this
constant is prohibitive for use in practical purposes.
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Although the shortest theory is always the best one in terms of
randomness deficiency, incremental compression of data-sets is in
general not a good learning strategy since the randomness deficiency
does not decrease monotonically with the compression rate (Adriaans
& Vitányi 2009).
The generality of the definitions provided by Algorithmic
Information Theory depends on the generality of the concept of a
universal Turing machine and thus ultimately on the interpretation of
the Church-Turing-Thesis.
The Kolmogorov complexity of an object does not take in to account
the amount of time it takes to actually compute the object. In this
context Levin proposed a variant of Kolmogorov complexity that
penalizes the computation time (Levin 1973, 1984):

Levin complexity The Levin complexity of a string x is the sum
of the length  and the logarithm of the computation time of
the smallest program p that produces x when it runs on a
universal Turing machine U, noted as :

Algorithmic Information Theory has gained rapid acceptance as a
fundamental theory of information. The well-known introduction in
Information Theory by Cover and Thomas (2006) states: “… we consider
Kolmogorov complexity (i.e., AIT) to be more fundamental than Shannon
entropy” (2006: 3).

The idea that algorithmic complexity theory is a foundation for a general
theory of artificial intelligence (and theory of knowledge) has already been
suggested by Solomonoff (1997) and Chaitin (1987). Several authors have
defended that data compression is a general principle that governs human
cognition (Chater & Vitányi 2003; Wolff 2004 [OIR]). Hutter (2005,

l(p)

U(p) = x

Kt(x) := {l(p) + log(time(p)), U(p) = x}min
p
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2007a,b) argues that Solomonoff’s formal and complete theory essentially
solves the induction problem. Hutter (2007a) and Rathmanner & Hutter
(2011) enumerate a plethora of classical philosophical and statistical
problems around induction and claim that Solomonoff’s theory solves or
avoids all these problems. Probably because of its technical nature, the
theory has been largely ignored by the philosophical community. Yet, it
stands out as one of the most fundamental contributions to information
theory in the twentieth century and it is clearly relevant for a number of
philosophical issues, such as the problem of induction.

5. Systematic Considerations

In a mathematical sense information is associated with measuring
extensive properties of classes of systems with finite but unlimited
dimensions (systems of particles, texts, codes, networks, graphs, games
etc.). This suggests that a uniform treatment of various theories of
information is possible. In the Handbook of Philosophy of Information
three different forms of information are distinguished (Adriaans & van
Benthem 2008b):

Information-A:
Knowledge, logic, what is conveyed in informative answers

Information-B:
Probabilistic, information-theoretic, measured quantitatively

Information-C:
Algorithmic, code compression, measured quantitatively

Because of recent development the connections between Information-B
(Shannon) and Information-C (Kolmogorov) are reasonably well
understood (Cover & Thomas 2006). The historical material presented in
this article suggests that reflection on Information-A (logic, knowledge) is
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historically much more interwoven than was generally known up till now.
The research program of logical positivism can with hindsight be
characterized as the attempt to marry a possible worlds interpretation of
logic with probabilistic reasoning (Carnap 1945, 1950; Popper 1934; for a
recent approach see Hutter et al. 2013). Modern attempt to design a
Bayesian epistemology (Bovens & Hartmann 2003) do not seem to be
aware of the work done in the first half of the twentieth century. However,
an attempt to unify Information-A and Information-B seems a viable
exercise. Also the connection between thermodynamics and information
theory have become much closer, amongst others, due to the work of Gell-
Mann & Lloyd (2003) (see also: Bais and Farmer 2008). Verlinde (2011,
2017) even presented a reduction of gravity to information (see the entry
on information processing and thermodynamic entropy).

5.1 Philosophy of Information as An Extension of Philosophy of
Mathematics

With respect to the main definitions of the concept of information, like
Shannon Information, Kolmogorov complexity, semantic information and
quantum information, a unifying approach to a philosophy of information
is possible, when we interpret it as an extension to the philosophy of
mathematics. The answer to questions like “What is data?” and “What is
information?” then evolves from one’s answer to the related questions like
“What is a set?” and “What is a number?” With hindsight one can observe
that many open problems in the philosophy of mathematics revolve around
the notion of information.

If we look at the foundations of information and computation there are two
notions that are crucial: the concept of a data set and the concept of an
algorithm. Once we accept these notions as fundamental the rest of the
theory data and computation unfolds quite naturally. One can “plug in”
one’s favorite epistemological or metaphysical stance here, but this does
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not really affect foundational issues in the philosophy of computation and
information. One might sustain a Formalist, Platonic or intuitionistic view
of the mathematical universe (see entry on philosophy of mathematics)
and still agree on the basic notion of what effective computation is. The
theory of computing, because of its finitistic and constructivist nature,
seems to live more or less on the common ground in which these theories
overlap.

5.1.1 Information as a natural phenomenon

Information as a scientific concept emerges naturally in the context of our
every day dealing with nature when we measure things. Examples are
ordinary actions like measuring the size of an object with a stick, counting
using our fingers, drawing a straight line using a piece of rope. These
processes are the anchor points of abstract concepts like length, distance,
number, straight line that form the building blocks of science. The fact that
these concepts are rooted in our concrete experience of reality guarantees
their applicability and usefulness. The earliest traces of information
processing evolved around the notions of counting, administration and
accountancy.

Example: Tally sticks 
One of the most elementary information measuring devices is unary
counting using a tally stick. Tally sticks were already used around
20,000 years ago. When a hypothetical prehistoric hunter killed a deer
he could have registered this fact by making a scratch “|” on a piece of
wood. Every stroke on such a stick represents an object/item/event.
The process of unary counting is based on the elementary operation of
catenation of symbols into sequences. This measuring method
illustrates a primitive version of the concept of extensiveness of
information: the length of the sequences is a measure for the amount
of items counted. Note that such a sequential process of counting is
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non-commutative and non-associative. If “|” is our basic symbol and 
 our concatenation operator then a sequence of signs has the form:

A new symbol is always concatenated at the end of the sequence.

This example helps to understand the importance of context in the analysis
of information. In itself a scratch on a stick may have no meaning at all,
but as soon as we decide that such a scratch represents another object or
event it becomes a meaningful symbol. When we manipulate it in such a
context we process information. In principle a simple scratch can represent
any event or object we like: symbols are conventional.

Definition: A symbol is a mark, sign or word that indicates, signifies,
or is understood as representing an idea, object, or relationship.

Symbols are the semantic anchors by which symbol manipulating systems
are tied to the world. Observe that the meta-statement:

The symbol “|” signifies object y.

if true, specifies semantic information:

It is wellformed: the statement has a specific syntax.
It is meaningful: Only in the context where the scratch “|” is actually
made deliberately on, e.g., a tally stick or in a rock to mark a well
defined occurrence it has a meaning.
It is truthful.

Symbol manipulation can take many forms and is not restricted to
sequences. Many examples of different forms of information processing
can be found in prehistoric times.

⊕
((… (| ⊕ |) …) ⊕ |) ⊕ |)
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Example: Counting sheep in Mesopotamia 
With the process of urbanization, early accounting systems emerged in
Mesopotamia around 8000 BCE using clay tokens to administer cattle
(Schmandt-Besserat 1992). Different shaped tokens were used for
different types of animals, e.g., sheep and goats. After the registration
the tokens were packed in a globular clay container, with marks
representing their content on the outside. The container was baked to
make the registration permanent. Thus early forms of writing emerged.
After 4000 BCE the tokens were mounted on a string to preserve the
order.

The historical transformation from sets to strings is important. It is a more
sophisticated form of coding of information. Formally we can distinguish
several levels of complexity of token combination:

An unordered collection of similar tokens in a container. This
represents a set. The tokens can move freely in the container. The
volume of the tokens is the only relevant quality.
An unordered collection of tokens of different types in a container.
This represents a so-called multiset. Both volume and frequency are
relevant.
An ordered collection of typed tokens on a string. This represents a
sequence of symbols. In this case the length of the string is a relevant
quality.

5.1.2 Symbol manipulation and extensiveness: sets, multisets and strings

Sequences of symbols code more information than multisets and multisets
are more expressive than sets. Thus the emergence of writing itself can be
seen as a quest to find the most expressive representation of administrative
data. When measuring information in sequences of messages it is
important to distinguish the aspects of repetition, order and grouping. The

Information

44 Stanford Encyclopedia of Philosophy

extensive aspects of information can be studied in terms of such structural
operations (see entry on substructural logics). We can study sets of
messages in terms of operators defined on sequences of symbols.

Definition: Suppose m, n, o, p, … are symbols and  is a tensor or
concatentation operator. We define the class of sequences:

1. Any symbol is a sequence
2. If  and  are sequences then is a sequence

For sequences we define the following basic properties on the level of
symbol concatenation:

1. Contraction:

Contraction destroys information about frequency in the
sequence. Physical interpretation: two occurrences of the same
symbol can collapse to one occurrence when they are
concatenated.

2. Commutativity:

Commutativity destroys information about order in the sequence.
Physical interpretation: symbols may swap places when they are
concatenated.

3. Associativity:

Associativity destroys information about nesting in the sequence.
Physical interpretation: symbols may be regrouped when they are

⊕

α β (α ⊕ β)

(m ⊕ m) = m.

(m ⊕ n) = (n ⊕  m)

(p ⊕ (q ⊕ r)) = ((p ⊕ q) ⊕ r) 
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concatenated.

Observation: Systems of sequences with contraction,
commutativity and associativity behave like sets. Consider the
equation:

When we model the sets as two sequences  and ,
the corresponding implication is:

Proof:

The structural aspects of sets, multisets and strings can be formulated in
terms of these properties:

Sets:   Sequences of messages collapse into sets under contraction,
commutativity and associativity. A set is a collection of objects in
which each element occurs only once:

and for which order is not relevant:

{p, q} ∪ {p, r} = {p, q, r}
(p ⊕ q) (p ⊕ r)

(p ⊕ q), (p ⊕ r) ⊢ ((p ⊕ q) ⊕ r)

((p ⊕ q)
((q ⊕ p)

(((q ⊕ p) ⊕ p)
((q ⊕ (p ⊕ p))

((q ⊕ p)
((p ⊕ q)

⊕ (p ⊕ r))
⊕ (p ⊕ r))
⊕ r)
⊕ r)
⊕ r)
⊕ r)

𝙲𝚘𝚗𝚌𝚊𝚝𝚎𝚗𝚊𝚝𝚒𝚘𝚗
𝙲𝚘𝚖𝚖𝚞𝚝𝚊𝚝𝚒𝚟𝚒𝚝𝚢
𝙰𝚜𝚜𝚘𝚌𝚒𝚊𝚝𝚒𝚟𝚒𝚝𝚢
𝙰𝚜𝚜𝚘𝚌𝚒𝚊𝚝𝚒𝚟𝚒𝚝𝚢

𝙲𝚘𝚗𝚝𝚛𝚊𝚌𝚝𝚒𝚘𝚗
𝙲𝚘𝚖𝚖𝚞𝚝𝚊𝚝𝚒𝚟𝚒𝚝𝚢

{a, b, c} ∪ {b, c, d} = {a, b, c, d}

{a, b, c} = {b, c, a}.
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Sets are associated with our normal everyday naive concept of
information as new, previously unknown, information. We only update
our set if we get a message we have not seen previously. This notion
of information is forgetful both with respect to sequence and
frequency. The set of messages cannot be reconstructed. This behavior
is associated with the notion of extensionality of sets: we are only
interested in equality of elements, not in frequency.

Multisets:   Sequences of messages collapse into multisets under
commutativity and associativity. A multiset is a collection of objects in
which the same element can occur multiple times

and for which order is not relevant:

Multisets are associated with a resource sensitive concept of
information defined in Shannon Information. We are interested in the
frequency of the messages. This concept is forgetful with regards to
sequence. We update our set every time we get a message, but we
forget the structure of the sequence. This behavior is associated with
the notion of extensiveness of information: we are both interested in
equality of elements, and in frequency.

Sequences:   Sequences are associative. Sequences are ordered
multisets: . The whole structure of the sequence of a
message is stored. Sequences are associated with Kolmogorov
complexity defined as the length of a sequence of symbols.

Sets may be interpreted as spaces in which objects can move freely. When
the same objects are in each others vicinity they collapse in to one object.

{a, b, c} ∪ {b, c, d} = {a, b, b, c, c, d}

{a, b, a} = {b, a, a}.

aba ≠ baa
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Multisets can be interpreted as spaces in which objects can move freely,
with the constraint that the total number of objects stays constant. This is
the standard notion of extensiveness: the total volume of a space stays
constant, but the internal structure may differ. Sequences may be
interpreted as spaces in which objects have a fixed location. In general a
sequence contains more information than the derived multiset, which
contains more information than the associated set.

Observation: The interplay between the notion of sequences and
multisets can be interpreted as a formalisation of the malleability of a
piece of wax that pervades history of philosophy as the paradigm of
information. Different sequences (forms) are representations of the
same multiset (matter). The volume of the piece of wax (length of the
string) is constant and thus a measure for the amount of information
that can be represented in the wax (i.e.in the sequence of symbols). In
terms of quantum physics the stability of the piece of wax seems to be
an emergent property: the statistical instability of objects on an atomic
level seem to even out when large quantities of them are manipulated.

5.1.3 Sets and numbers

The notion of a set in mathematics is considered to be fundamental. Any
identifiable collection of discrete objects can be considered to be a set. The
relation between theory of sets and the concept of information becomes
clear when we analyze the basic statement:

Which reads the object e is an element of the set A. Observe that this
statement, if true, represents a piece of semantic information. It is
wellformed, meaningful and truthful. (see entry on semantic conceptions
of information) The concept of information is already at play in the basic

e ∈ A
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building blocks of mathematics.The philosophical question “What are
sets?” the answer to the ti esti question, is determined implicitly by the
Zermelo-Fraenkel axioms (see entry on set theory), the first of which is
that of extensionality:

Two sets are equal if they have the same elements.

The idea that mathematical concepts are defined implicitly by a set of
axioms was proposed by Hilbert but is not uncontroversial (see entry on
the Frege-Hilbert controversy). The fact that the definition is implicit
entails that we only have examples of what sets are without the possibility
to formulate any positive predicate that defines them. Elements of a set are
not necessarily physical, nor abstract, nor spatial or temporal, nor simple,
nor real. The only prerequisite is the possibility to formulate clear
judgments about membership. This implicit definition of the notion of a
set is not unproblematic. We might define objects that at first glance seem
to be proper sets, which after scrutiny appear to be internally inconsistent.
This is the basis for:

Russell’s paradox: This paradox, which motivated a lot of research
into the foundations of mathematics, is a variant of the liars paradox
attributed to the Cretan philosopher Epeimenides (ca. 6 BCE) who
apparently stated that Cretans always lie. The crux of these paradoxes
lies in the combination of the notions of: Universality, Negation, and
Self-reference.

Any person who is not Cretan can state that all Cretans always lie. For
a Cretan this is not possible because of the universal negative self-
referential nature of the statement. If the statement is true, he is not
lying which makes the statement untrue: a real paradox based on self
contradiction. Along the same lines Russel coined the concept of the
set of all sets that are not member of themselves, for which
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membership cannot be determined. Apparently the set of all sets is an
inadmissible object within set theory. In general there is in philosophy
and mathematics a limit to the extent in which a system can verify
statements about itself within the system. (For further discussion, see
the entry on Russell’s paradox.)

The implicit definition of the concepts of sets, entails that the class is
essentially open itself. There are mathematical definitions of objects of
which it is unclear or highly controversial whether they define a set or not.

Modern philosophy of mathematics starts with the Frege-Russell theory of
numbers (Frege 1879, 1892, Goodstein 1957, see entry on alternative
axiomatic set theories) in terms of sets. If we accept the notion of a class
of objects as valid and fundamental, together with the notion of a one-to-
one correspondence between classes of objects, then we can define
numbers as sets of equinumerous classes.

Definition: Two sets Aand B are equinumerous, , if there exists
a one-to-one correspondence between them, i.e., a function 
such that for every  there is exactly one .

Any set of, say four, objects then becomes a representation of the number
4 and for any other set of objects we can establish membership to the
equivalence class defining the number 4 by defining a one to one
correspondence to our example set.

Definition: If A is a finite set, then  is the class of
all sets equinumerous with A. The associated generalization operation
is the cardinality function: . This defines
a natural number  associated with the set A.

We can reconstruct large parts of the mathematical universe by selecting
appropriate mathematical example objects to populate it, beginning with

A ∼ B
f : A → B

a ∈ A f (a) ∈ B

= {X ∣ X ∼ A}A

|A| = = {X ∣ X ∼ A} = nA
|A| = n ∈ ℕ
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the assumption that there is a single unique empty set  which represents
the number 0. This gives us the existence of a set with only one member 

 to represent the number 1 and repeating this construction, 
for 2, the whole set of natural numbers  emerges. Elementary arithmetic
then is defined on the basis of Peano’s axioms:

1. Zero is a number.
2. If a is a number, the successor of a is a number.
3. Zero is not the successor of a number.
4. Two numbers of which the successors are equal are themselves equal.
5. (induction axiom.) If a set S of numbers contains zero and also the

successor of every number in S, then every number is in S.

The fragment of the mathematical universe that emerges is relatively
uncontroversial and both Platonists and constructivists might agree on its
basic merits. On the basis of Peano’s axioms we can define more complex
functions like addition and multiplication which are closed on  and the
inverse functions, subtraction and division, which are not closed and lead
to the set of whole numbers  and the rational numbers .

5.1.4 Measuring information in numbers

We can define the concept of information for a number n by means of an
unspecified function . We observe that addition and multiplication
specify multisets: both are non-contractive and commutative and
associative. Suppose we interpret the tensor operator  as multiplication 

. It is natural to define the semantics for  in terms of addition. If
we get both messages m and n, the total amount of information in the
combined messages is the sum of the amount of information in the
individual messages. This leads to the following constraints:

Definition: Additivity Constraint:

∅

{∅} {∅, {∅}}
ℕ

ℕ

ℤ ℚ

I(n)

⊕
× I(m × n)
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Furthermore we want bigger numbers to contain more information than
smaller ones, which gives a:

Definition: Monotonicity Constraint:

We also want to select a certain number a as our basic unit of
measurement:

Definition: Normalization Constraint:

The following theorem is due to Rényi (1961):

Theorem: The Logarithm is the only mathematical operation that
satisfies Additivity, Monotonicity and Normalisation.

Observation: The logarithm  of a number n characterizes our
intuitions about the concept of information in a number n exactly.
When we decide that 1) multisets are the right formalisation of the
notion of extensiveness, and 2) multiplication is the right operation to
express additivity, then the logarithm is the only measurement
function that satisfies our constraints.

We define:

Definition: For all natural numbers 

For  our unit of measurement is the bit

I(m × n) = I(m) + I(n)

I(m) ≤ I(m + 1)

I(a) = 1

nloga

n ∈ ℕ+

I(n) = n.loga

a = 2
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For  (i.e., Euler’s number) our unit of measurement is the
gnat
For  our unit of measurement is the Hartley

5.1.5 Measuring information and probabilities in sets of numbers

For finite sets we can now specify the amount of information we get when
we know a certain element of a set conditional to knowing the set as a
whole.

Definition: Suppose S is a finite set and we have:

then,

i.e., the log of the cardinality of the set.

The bigger the set, the harder the search is, the more information we get
when we find what we are looking for. Conversely, without any further
information the probability of selecting a certain element of S is 

. The associated function is the so-called Hartley function:

Definition: If a sample from a finite set S uniformly at random is
picked, the information revealed after the outcome is known is given
by the Hartley function (Hartley 1928):

The combination of these definitions gives a theorem that ties together the
notions of conditional information and probability:

a = e

a = 10

e ∈ S

I(e ∣ S) = |S|loga

(x) =pS
1

|S|

(S) = |S|H0 loga
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Unification Theorem: If S is a finite set then,

The information about an element x of a set S conditional to the set is
equal to the probability that we select this element x under uniform
distribution, which is a measure of our ignorance if we know the set but
not which element of the set is to be selected.

Observation: Note that the Hartley function unifies the concepts of
entropy defined by Boltzmann , where W is the cardinality
of the set of micro states of system S, with the concept of Shannon
information . If we consider S to be a set of
messages, then the probability that we select an element x from the set
(i.e., get a message form S ) under uniform distribution pis . 
is also known as the Hartley Entropy of S.

Using these results we define the conditional amount of information in a
subset of a finite set as:

Definition: If A is a finite set and B is an arbitrary subset , with 
 and  we have:

This is just an application of our basic definition of information: the
cardinality of the class of subsets of A with size k is .

The formal properties of the concept of probability are specified by the
Kolmogorov Axioms of Probability:

Definition:  is the probability P that some event E occurs. 
, with , is a probability space, with sample space ,

I(x ∣ S) = (S)H0

S = k log W

(x) = − log p(x)IS

1
|S| (S)H0

B ⊂ A
|A| = n |B| = k

I(B ∣ A) = ( )loga
n
k

( )n
k

P(E)
(Ω, F, P) P(Ω) = 1 Ω
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event space and probability measure.

Let  be the probability P that some event E occurs. Let , with
, be a probability space, with sample space , event space F and

probability measure P.

1. The probability of an event is a non-negative real number
2. There is a unit of measure. The probability that one of the events in

the event space will occur is 1: 
3. Probability is additive over sets:

One of the consequences is monotonicity: if  implies .
Note that this is the same notion of additivity as defined for the concept of
information. At subatomic level the Kolmogorov Axiom of additivity
loses its validity in favor of a more subtle notion (see section 5.3).

5.1.6 Perspectives for unification

From a philosophical point of view the importance of this construction lies
in the fact that it leads to an ontologically neutral concept of information
based on a very limited robust base of axiomatic assumptions:

It is reductionist in the sense that once one accepts the concepts like
classes and mappings, the definition of the concept of Information in
the context of more complex mathematical concepts naturally
emerges.
It is universal in the sense that the notion of a set is universal and
open.
It is semantic in the sense that the notion of a set itself is a semantic
concept.

P(E) (Ω, F, P)
P(Ω) = 1 Ω

P(Ω = 1)

P ( ) = P( )⋃
i=1

∞
Ei ∑

i=1

∞
Ei

A ⊆ B P(A) ≤ P(B)
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It unifies a variety of notions (sets, cardinality, numbers, probability,
extensiveness, entropy and information) in one coherent conceptual
framework.
It is ontologically neutral in the sense that the notion of a set or class
does not imply any ontological constraint on its possible members.

This shows how Shannon’s theory of information and Boltzmann’s notion
of entropy are rooted in more fundamental mathematical concepts. The
notions of a set of messages or a set of micro states are specializations of
the more general mathematical concept of a set. The concept of
information already exists on this more fundamental level. Although many
open questions still remain, specifically in the context of the relation
between information theory and physics perspectives on a unified theory
of information now look better than at the beginning of the twenty-first
century.

5.1.7 Information processing and the flow of information

The definition of the amount of information in a number in therms of
logarithms allows us to classify other mathematical functions in terms of
their capacity to process information. The Information Efficiency of a
function is the difference between the amount of information in the input
of a function and the amount of information in the output (Adriaans 2016
[OIR]). It allows us to measure how information flows through a set of
functions. We use the shorthand  for :

Definition: Information Efficiency of a Function: Let  be a
function of k variables. We have:

the input information  and
the output information .
The information efficiency of the expression  is

f ( )x⎯⎯⎯ f ( , , … , )x1 x2 xk

f : → ℕℕk

I( )x⎯⎯⎯

I(f ( ))x⎯⎯⎯

f ( )x⎯⎯⎯
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A function f is information conserving if  i.e., it
contains exactly the amount of information in its input
parameters,
it is information discarding if  and
it has constant information if .
it is information expanding if .

In general deterministic information processing systems do not create new
information. They only process it. The following fundamental theorem
about the interaction between information and computation is due to
Adriaans and Van Emde Boas (2011):

Theorem: Deterministic programs do not expand information.

This is in line with both Shannon’s theory and Kolmogorov complexity.
The outcome of a deterministic program is always the same, so the
probability of the outcome is 1 which gives under Shannon’s theory, 0 bits
of new information. Likewise for Kolmogorov complexity, the output of a
program can never be more complex than the length of the program itself,
plus a constant. This is analyzed in depth in Adriaans and Van Emde Boas
(2011). In a deterministic world it is the case that if:

then

The essence of information is uncertainty and a message that occurs with
probability “1” contains no information. The fact that it might take a long
time to compute the number is irrelevant as long as the computation halts.

δ(f ( )) = I(f ( )) − I( )x⎯⎯⎯ x⎯⎯⎯ x⎯⎯⎯

δ(f ( )) = 0x⎯⎯⎯

δ(f ( )) < 0x⎯⎯⎯

δ(f ( )) = cx⎯⎯⎯

δ(f ( )) > 0x⎯⎯⎯

𝚙𝚛𝚘𝚐𝚛𝚊𝚖(𝚒𝚗𝚙𝚞𝚝)=𝚘𝚞𝚝𝚙𝚞𝚝

I(𝚘𝚞𝚝𝚙𝚞𝚝) ≤ I(𝚙𝚛𝚘𝚐𝚛𝚊𝚖) + I(𝚒𝚗𝚙𝚞𝚝)
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Infinite computations are studied in the theory of Scott domains
(Abramsky & Jung 1994).

Estimating the information efficiency of elementary functions is not
trivial. The primitive recursive functions (see entry on recursive functions)
have one information expanding operation, counting, one information
discarding operation, choosing, all the others are information neutral. The
information efficiency of more complex operations is defined by a
combination of counting and choosing. From an information efficiency
point of view the elementary arithmetical functions are complex families
of functions that describe computations with the same outcome, but with
different computational histories.

Some arithmetical operations expand information, some have constant
information and some discard information. During the execution of
deterministic programs expansion of information may take place, but, if
the program is effective, the descriptive complexity of the output is
limited. The flow of information is determined by the succession of types
of operations, and by the balance between the complexity of the operations
and the number of variables.

We briefly discuss the information efficiency of the two basic recursive
functions on two variables and their coding possibilities:

Addition When computing sums of natural numbers we make choices in
the order of the computations that influence the information efficiency of
the resulting computation. Depending on the order of the underlying
operations a variety of values may emerge for the information efficiency:
e.g., the conditional information in the number 200 given the set 

 varies with the method of computation:{2, 47, 53, 98}
(2 + 98) + (47 + 53) = (2 + 47) + (53 + 98) = 200
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but:

Even from a cognitive point of view we experience this difference in
difficulty when computing the same sum in different ways:

Observation: Information efficiency is non-associative for addition. if
S is a finite set of natural numbers then the expression:

is not defined.

This explains, in part, why the so-called subset Sum Problem (see section
6.3) is hard. The information efficiency of expressions describing sums of
subsets of numbers is not uniquely defined, a fact that influences the
possibilities to search these sets.

Addition is associated with information storage in terms of sequences or
strings of symbols. It is information discarding for natural numbers bigger
than 1. We have  since . Still,
addition has information preserving qualities. If we add numbers with
different log units we can reconstruct the frequency of the units from the
resulting number:

δ(2 + 98) + δ(47 + 53) + δ(100 + 100) ≈ −1.08 >
δ(2 + 47) + δ(53 + 98) + δ(49 + 151) ≈ −1.74

δ ( i)∑
i∈S

δ(a + b) < 0 log(a + b) < log a + log b

232 = 200 + 30 + 2
= (2 × ) + (3 × ) + (2 × )102 101 100
= 100 + 100 + 10 + 10 + 10 + 1 + 1
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Since the information in the building blocks, 100, 10 and 1, is given the
number representation can still be reconstructed. This implies that natural
numbers code in terms of addition of powers of k in principle two types of
information: value and frequency. We can use this insight to code complex
typed information in single natural numbers. Basically it allows us to code
any natural numbers in a string of symbols of length , which
specifies a quantitative measure for the amount of information in a number
in terms of the length of its code. See section 3.3 for a historical analysis
of the importance of the discovery of position systems for information
theory.

Multiplication is by definition information conserving. We have: 
, since . Still multiplication does

not preserve all information in its input: the order of the operation is lost.
This is exactly what we want from an operator that characterizes an
extensive measure: only the extensive qualities of the numbers are
preserved. If we multiply two numbers , then the result, 12, allows us
to reconstruct the original computation, in so far as we can reduce all its
components to their most elementary values: . This leads
to the observation that some numbers act as information building blocks of
other numbers, which gives us the concept of a prime number:

Definition: A prime number is a number that is only divisible by itself
or 1.

The concept of a prime number gives rise to the Fundamental Theorem of
Arithmetic:

Theorem: Every natural number n greater than 1 is either prime or a
product of a multiset  of primes, and this multiset is unique for n.

The Fundamental Theorem of Arithmetic can be seen as a theorem about
conservation of information: for every natural number there is a set of

⌈ n⌉logk

δ(a × b) = 0 log(a × b) = log a + log b

3 × 4

2 × 2 × 3 = 12

Ap
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natural numbers that contains exactly that same amount of information.
The factors of a number form a so-called multiset: a set that may contain
multiple copies of the same element: e.g., the number 12 defines the
multiset  in which the number 2 occurs twice. This makes
multisets a powerful device for coding information since it codes
qualitative information (i.e., the numbers 2 and 3) as well as quantitative
information (i.e., the fact that the number 2 occurs twice and the number 3
only once). This implies that natural numbers in terms of multiplication of
primes also code two types of information: value and frequency. Again we
can use this insight to code complex typed information in single natural
numbers.

5.1.8 Information, primes, and factors

Position based number representations using addition of powers are
straightforward and easy to handle and form the basis of most of our
mathematical functions. This is not the case for coding systems based on
multiplication. Many of the open questions in the philosophy of
mathematics and information arise in the context of the concepts of the
Fundamental Theorem of Arithmetic and Primes. We give a short
overview:

(Ir)regularity of the set of primes.
Since antiquity it is known that there is an infinite number of primes.
The proof is simple. Suppose the set of primes P is finite. Now
multiply all elements of P and add 1. The resulting number cannot be
divided by any member of P, so P is incomplete. An estimation of the
density of the prime numbers given by the Prime Number Theorem
(see entry in Encyclopaedia Britannica on Prime Number Theorem
[OIR]). It states that the gaps between primes in the set of natural
numbers of size n is roughly , where  is the natural logarithm
based on Euler’s number e. A refinement of the density estimation is

{2, 2, 3}

ln n ln
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given by the so-called Riemannn hypothesis, formulated by him in
1859 (Weisstein 2002 [OIR]), which is commonly regarded as deepest
unsolved problems in mathematics, although most mathematicians
consider the hypothesis to be true.

(In)efficiency of Factorization.
Since multiplication conserves information the function is, to an
extent, reversible. The process of finding the unique set of primes for a
certain natural number n is called factorization. Observe that the use
of the term “only” in the definition of a prime number implies that this
is in fact a negative characterization: a number n is prime if there
exists no number between 1 and n that divides it. This gives us an
effective procedure for factorization of a number n (simply try to
divide n by all numbers between 1 and , but such techniques are not
efficient.

If we use a position system to represent the number n then the process
of identifying factors of n by trial and error will take a deterministic
computer program at most n trials which gives a computation time
exponential in the length of the representation of the number which is 

. Factorization by trial and error of a relatively simple number,
of, say, two hundred digits, which codes a rather small message, could
easily take a computer of the size of our whole universe longer than
the time passed since the big bang. So, although theoretically feasible,
such algorithms are completely unpractical.

Factorization is possibly an example of so-called trapdoor one-to-one
function which is easy to compute from one side but very difficult in
its inverse. Whether factorization is really difficult, remains an open
question, although most mathematicians believe the problem to be
hard. Note that factorization in this context can be seen as the process
of decoding a message. If factorization is hard it can be used as an

n)

⌈log n⌉
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encryption technique. Classical encryption is based on multiplying
codes with large prime numbers. Suppose Alice has a message
encoded as a large number m and she knows Bob has access to a large
prime p. She sends the number  to Bob. Since Bob knows p
he can easily reconstruct m by computing . Since factorization
is difficult any other person that receives the message n will have a
hard time reconstructing m.

Primality testing versus Factorization.
Although at this moment efficient techniques for factorization on
classical computers are not known to exist, there is an efficient
algorithm that decides for us whether a number is prime or not: the so-
called AKS primality test (Agrawal et al. 2004). So, we might know a
number is not prime, while we still do not have access to its set of
factors.

Classical- versus Quantum Computing.
Theoretically factorization is efficient on quantum computers using
Shor’s algorithm (Shor 1997). This algorithm has a non-classical
quantum subroutine, embedded in a deterministic classical program.
Collections of quantum bits can be modeled in terms of complex
higher dimensional vector-spaces, that, in principle, allow us to
analyze an exponential number  of correlations between collections
of n objects. Currently it is not clear whether larger quantum
computers will be stable enough to facilitate practical applications, but
that the world at quantum level has relevant computational
possibilities can not be doubted anymore, e.g., quantum random
generators are available as a commercial product (see Wikipedia entry
on Hardware random number generator [OIR]). As soon as viable
quantum computers become available almost all of the current
encryption techniques become useless, although they can be replaced

p × m = n
m = n/p

2n
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by quantum versions of encryption techniques (see the entry on
Quantum Computiong).

Observation: The existence of an infinite set of prime numbers is an
indication that, although the set of natural numbers  is defined by the
Peano axioms, this characterization is fundamentally incomplete.

There is an infinite number of observations we can make about the set 
that are not implied directly by the axioms, but involve a considerable
amount of computation.

5.1.9 Incompleteness of arithmetic

In a landmark paper in 1931 Kurt Gödel proved that any consistent formal
system that contains elementary arithmetic is fundamentally incomplete in
the sense that it contains true statements that cannot be proved within the
system. In a philosophical context this implies that the semantics of a
formal system rich enough to contain elementary mathematics cannot be
defined in terms of mathematical functions within the system, i.e., there
are statements that contain semantic information about the system in the
sense of being well-formed, meaningful and truthful without being
computable.

Central is the concept of a Recursive Function. (see entry on recursive
functions). Such functions are defined on numbers. Gödel’s notion of a
recursive function is closest to what we would associate with computation
in every day life. Basically they are elementary arithmetical functions
operating on natural numbers like addition, subtraction, multiplication and
division and all other functions that can be defined on top of these.

We give the basic structure of the proof. Suppose F is a formal system,
with the following components:

ℕ

ℕ
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It has a finite set of symbols
It has a syntax that enables us to combine the symbols in to well-
formed formulas
It has a set of deterministic rules that allows us to derive new
statements from given statements
It contains elementary arithmetic as specified by Peano’s axioms (see
section 5.1.3 above).

Assume furthermore that F is consistent, i.e., it will never derive false
statements form true ones. In his proof Gödel used the coding possibilities
of multiplication to construct an image of the system (see the discussion of
Gödel numbering from the entry on Gödel’s Incompleteness Theorems).
According to the fundamental theorem of arithmetic any number can be
uniquely factored in to its primes. This defines a one-to-one relationship
between multisets of numbers and numbers: the number 12 can be
constructed on the basis of the multiset  as  and
vice versa. This allows us to code any sequence of symbols as a specific
individual number in the following way:

A unique number is assigned to every symbol
Prime numbers locate the position of the symbol in a string
The actual number of the same primes in the set of prime factors
defines the symbol

On the basis of this we can code any sequence of symbols as a so-called
Gödel number, e.g., the number:

codes the multiset , which represents the string “abba”
under the assumption , . With this observation conditions close
to those that lead to the paradox of Russel are satisfied: elementary

{2, 2, 3} 12 = 2 × 2 × 3

2 × 3 × 3 × 5 × 5 × 7 = 3150
{2, 3, 3, 5, 5, 7}

a = 1 b = 2
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arithmetic itself is rich enough to express: Universality, Negation, and
Self-reference.

Since arithmetic is consistent this does not lead to paradoxes, but to
incompleteness. By a construction related to the liars paradox Gödel
proved that such a system must contain statements that are true but not
provable: there are true sentences of the form “I am not provable”.

Theorem: Any formal system that contains elementary arithmetic is
fundamentally incomplete. It contains statements that are true but not
provable.

In the context of philosophy of information the incompleteness of
mathematics is a direct consequence of the rich possibilities of the natural
numbers to code information. In principle any deterministic formal system
can be represented in terms of elementary arithmetical functions.
Consequently, If such a system itself contains arithmetic as a sub system,
it contains a infinite chain of endomorphisms (i.e., images of itself). Such
a system is capable of reasoning about its own functions and proofs but
since it is consistent (and thus the construction of paradoxes is not possible
within the system) it is by necessity incomplete.

5.2 Information and Symbolic Computation

Recursive functions are abstract relations defined on natural numbers. In
principle they can be defined without any reference to space and time.
Such functions must be distinguished from the operations that we use to
compute them. These operations mainly depend on the type of symbolic
representations that we choose for them. We can represent the number
seven as unary number , binary number 111, Roman number VII, or
Arabic number 7 and depending on our choice other types of sequential
symbol manipulation can be used to compute the addition two plus five is
seven, which can be represented as:

|||||||
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Consequently we can read these four sentences as four statements of the
same mathematical truth, or as statements specifying the results of four
different operations.

Observation: There are (at least) two different perspectives from
which we can study the notion of computation. The semantics of the
symbols is different under these interpretations.

The Recursive Function Paradigm studies computation in terms
of abstract functions on natural numbers outside space and time.
When interpreted as a mathematical fact, the  sign in 

 signifies the mathematical function called
addition and the  sign specifies equality.
The Symbol Manipulation Paradigm studies computation in
terms of sequential operations on spatial representations of
strings of symbols. When interpreted as an operation the  sign
in  signifies the input for a sequential process of
symbol manipulation and the  sign specifies the result of that
operation or output. Such an algorithm could have the following
form:

This leads to the following tentative definition:

|| + |||||
10 + 101

II + V
2 + 5

= |||||||
= 111
= VII
= 7

+
10 + 101 = 111

=

+
10 + 101 = 111

=

𝟷𝟶
+𝟷𝟶𝟷

𝟷𝟷𝟷
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Definition: Deterministic Computing on a Macroscopic Scale can be
defined as the local, sequential, manipulation of discrete objects
according to deterministic rules.

In nature there are many other ways to perform such computations. One
could use an abacus, study chemical processes or simply manipulate
sequences of pebbles on a beach. The fact that the objects we manipulate
are discrete together with the observation that the dataset is self-referential
implies that the data domain is in principle Dedekind Infinite:

Definition: A set S is Dedekind Infinite if it has a bijection 
to a proper subset .

Since the data elements are discrete and finite the data domain will be
countable infinite and therefore isomorphic to the set of natural numbers.

Definition: An infinite set S is countable if there exists a bijection
with the set of natural numbers .

For infinite countable sets the notion of information is defined as follows:

Definition: Suppose S is countable and infinite and the function 
 defines a one-to-one correspondence, then:

i.e., the amount of information in an index of a in S given f.

Note that the correspondence f is specified explicitly. As soon as such an
index function is defined for a class of objects in the real world, the
manipulation of these objects can be interpreted a form of computing.

5.2.1 Turing machines

f : S → S′

⊂ SS′

ℕ

f : S → ℕ
I(a ∣ S, f ) = log f (a)
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Once we choose our symbols and our operational rules the system starts to
produce statements about the world.

Observation: The meta-sentence:

The sign “0” is the symbol for zero.

specifies semantic information in the same sense as the statement 
 does for sets (see section 6.6). The statement is wellformed,

meaningful and truthful.

We can study symbol manipulation in general on an abstract level, without
any semantic implications. Such a theory was published by Alan Turing
(1912–1954). Turing developed a general theory of computing focusing on
the actual operations on symbols a mathematician performs (Turing 1936).
For him a computer was an abstraction of a real mathematician sitting
behind a desk, receiving problems written down on an in-tray (the inut),
solving them according to fixed rules (the process) and leaving them to be
picked up in an out-tray (the output).

Turing first formulated the notion of a general theory of computing along
these lines. He proposed abstract machines that operate on infinite tapes
with three symbols: blank , zero  and one . Consequently the data
domain for Turing machines is the set of relevant tape configurations,
which can be associated with the set of binary strings, consisting of zero’s
and one’s. The machines can read and write symbols on the tape and they
have a transition function that determines their actions under various
conditions. On an abstract level Turing machines operate like functions.

Definition: If  is a Turing machine with index i and x is a string of
zero’s and one’s on the tape that function as the input then 
indicates the tape configuration after the machine has stopped, i.e., its
output.

e ∈ A

(b) (0) (1)

Ti
(x)Ti
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There is an infinite number of Turing machines. Turing discovered that
there are so-called universal Turing machines  that can emulate any
other Turing machine .

Definition: The expression  denotes the result of the emulation
of the computation  by  after reading the self-delimiting
description  of machine .

The self-delimiting code is necessary because the input for  is coded as
one string . The universal machine  separates the input string  in
to its two constituent parts: the description of the machine  and the input
for this machine x.

The self-referential nature of general computational systems allows us to
construct machines that emulate other machines. This suggests the
possible existence of a ‘super machine’ that emulates all possible
computations on all possible machines and predicts their outcome. Using a
technique called diagonalization, where one analyzes an enumeration of
all possible machines running on descriptions of all possible machines,
Turing proved that such a machine can not exist. More formally:

Theorem: There is no Turing machine that predicts for any other
Turing machine whether it stops on a certain input or not.

This implies that for a certain universal machine  the set of inputs on
which it stops in finite time, is uncomputable. Not every machine will stop
on every input.

Definition: The Halting set is the set of combinations of Turing
machines  and inputs x such that the computation  stops.

The existence of universal Turing machines indicates that the class
embodies a notion of universal computing: any computation that can be

Uj
Ti

( x)Uj Ti
⎯ ⎯⎯⎯⎯

(x)Ti Uj

Ti
⎯ ⎯⎯⎯⎯

Tj

Uj

xTi
⎯ ⎯⎯⎯⎯

Uj xTi
⎯ ⎯⎯⎯⎯

Ti
⎯ ⎯⎯⎯⎯

Ui

Ti (x)Ti
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performed on a specific Turing machine can also be performed on any
other universal Turing machine. This is the mathematical foundation of the
concept of a general programmable computer. These observations have
bearing on the theory of information: certain measures of information, like
Kolmogorov complexity, are defined, but not computable.

The proof of the existence uncomputable functions in the class of Turing
machines is similar to the incompleteness result of Gödel for elementary
arithmetic. Since Turing machines were defined to study the notion of
computation and thus contain elementary arithmetic. The class of Turing
machines is in itself rich enough to express: Universality, Negation and
Self-reference. Consequently Turing machines can model universal
negative statements about themselves. Turing’s uncomputability proof is
also motivated by the liars paradox, and the notion of a machine that stops
on a certain input is similar to the notion of a proof that exists for a certain
statement. At the same time Turing machines satisfy the conditions of
Gödel’s theorem: they can be modeled as a formal system F that contains
elementary Peano arithmetic.

Observation: Since they can emulate each other, the Recursive
Function Paradigm and the Symbol Manipulation Paradigm have the
same computational strength. Any function that can be computed in
one paradigm can also by definition be computed in the other.

This insight can be generalized:

Definition: An infinite set of computational functions is Turing
complete if it has the same computational power as the general class of
Turing machines. In this case it is called Turing equivalent. Such a
system is, like the class of Turing machines, universal: it can emulate
any computable function.
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The philosophical implications of this observation are strong and rich, not
only for the theory of computing but also for our understanding of the
concept of information.

5.2.2 Universality and invariance

There is an intricate ration between the notion of universal computing and
that of information. Precisely the fact that Turing Systems are universal
allows us to say that they process information, because their universality
entails invariance:

Small Invariance Theorem: The concept of information in a string x
measured as the length of the smallest string of symbols s of a
program for a universal Turing machine U such that  is
asymptotically invariant under selection of different universal Turing
machines

Proof: The proof is simple and relevant for philosophy of information. Let
 be the length of the string of symbols x. Suppose we have two

different universal Turing machines  and . Since they are universal
they can both emulate the computation  of Turing machine  on
input x:

Here  is the length of the code for  on  and  is the length of

the code for  on . Suppose , i.e., the code for  on 
 is much less efficient that on . Observe that the code for  has

constant length, i.e., . Since  is universal we can compute:

U(s) = x

l(x)
Uj Uk

(x)Ti Ti

( x)Uj T
⎯ ⎯⎯⎯ j

i

( x)Uk T
⎯ ⎯⎯⎯ k

i

l( )T
⎯ ⎯⎯⎯ j

i Ti Uj l( )T
⎯ ⎯⎯⎯ k

i

Ti Uk l( x) ≪ l( x)T
⎯ ⎯⎯⎯ j

i T
⎯ ⎯⎯⎯ k

i Ti
Uk Uj Uj

l( ) = cU
⎯ ⎯⎯⎯⎯ k

j Uk

(  x)k
k j
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The length of the input for this computation is:

Consequently the specification of the input for the computation  on
the universal machine  never needs to longer than a constant. 

This proof forms the basis of the theory of Kolmogorov complexity and is
originally due to Solomonoff (1964***a or b?*) and discovered
independently by Kolmogorov (1965) and Chaitin (1969). Note that this
notion of invariance can be generalized over the class of Turing Complete
Systems:

Big Invariance Theorem: The concept of information measured in
terms of the length of the input of a computation is asymptotically
invariant for for Turing Complete systems.

Proof: Suppose we have a Turing Complete system F. By Definition
any computation  on a Turing machine can be emulated in F and
vice versa. There will be a special universal Turing machine  that

emulates the computation  in F: . In principle  might

use a very inefficient way to code programs such that  can have any
length. Observe that the code for any other universal machine 

emulated by  has constant length, i.e., . Since  is
universal we can also compute:

The length of the input for this computation is:

(  x)Uk U
⎯ ⎯⎯⎯⎯ k

j T
⎯ ⎯⎯⎯ j

i

l(  x) = c + l( x)U
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j T
⎯ ⎯⎯⎯ j
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i

(x)Ti
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UF
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Consequently the specification of the input for the computation 
on the universal machine  never needs to be longer than a constant. 

How strong this result is becomes clear when we analyze the class of
Turing complete systems in more detail. In the first half of the twentieth
century three fundamentally different proposals for a general theory of
computation were formulated: Gödel’s recursive functions ( Gödel 1931),
Turing’s automata (Turing 1937) and Church’s Lambda Calculus (Church
1936). Each of these proposals in its own way clarifies aspects of the
notion of computing. Later much more examples followed. The class of
Turing equivalent systems is diverse. Apart from obvious candidates like
all general purpose programming languages (C, Fortran, Prolog, etc.) it
also contains some unexpected elements like various games (e.g., Magic:
The Gathering [Churchill 2012 OIR]). The table below gives an overview
of some conceptually interesting systems:

An overview of some Turing Complete systems

System Data Domain
General Recursive Functions Natural Numbers
Turing machines and their generalizations Strings of symbols
Diophantine Equations Integers
Lambda calculus Terms
Type-0 languages Sentences
Billiard Ball Computing Ideal Billiard Balls
Cellular automata Cells in one dimension
Conway’s game of life Cells in two dimensions

We make the following:

l(  x) = c + l( x)U
⎯ ⎯⎯⎯⎯ F

j T
⎯ ⎯⎯⎯ j

i T
⎯ ⎯⎯⎯ j

i

(x)Ti
UF

◻
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Observation: The class of Turing equivalent systems is open, because
it is defined in terms of purely operational mappings between
computations.

A direct consequence of this observation is:

Observation: The general theory of computation and information
defined by the class of Complete Turing machines is ontologically
neutral.

It is not possible to derive any necessary qualities of computational
systems and data domains beyond the fact that they are general
mathematical operations and structures. Data domains on which Turing
equivalent systems are defined are not necessarily physical, nor temporal,
nor spatial, not binary or digital. At any moment a new member for the
class can be introduced. We know that there are computational systems
that are weaker than the class of Turing machines (e.g., regular languages).
We cannot rule out the possibility that one-day we come across a system
that is stronger. The thesis that such a system does not exist is known as
the Church-Turing thesis (see entry on Church-Turing thesis):

Church-Turing Thesis: The class of Turing machines characterizes
the notion of algorithmic computing exactly.

We give an overview of the arguments for and against the thesis:

Arguments in favor of the thesis: The theory of Turing machines seems to
be the most general theory possible that we can formulate since it is based
on a very limited set of assumptions about what computing is. The fact
that it is universal also points in the direction of its generality. It is difficult
to conceive in what sense a more powerful system could be “more”
universal. Even if we could think of such a more powerful system, the in-
and output for such a system would have to be finite and discrete and the
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computation time also finite. So, in the end, any computation would have
the form of a finite function between finite data sets, and, in principle, all
such relations can be modeled on Turing machines. The fact that all
known systems of computation we have defined so far have the same
power also corroborates the thesis.

Arguments against the thesis: The thesis is, in its present form,
unprovable. The class of Turing Complete systems is open. It is defined on
the basis of the existence of equivalence relations between systems. In this
sense it does not define the notion of computing intrinsically. It doesn’t not
provide us with a philosophical theory that defines what computing exactly
is. Consequently it does not allow us to exclude any system from the class
a priori. At any time a proposal for a notion of computation might emerge
that is fundamentally stronger. What is more, nature provides us with
stronger notions of computing in the form of quantum computing.
Quantum bits are really a generalization of the normal concept of bits that
is associated with symbol manipulation, although in the end quantum
computing does not seem to necessitate us to redefine the notion of
computing so far. We can never rule out that research in physics, biology
or chemistry will define systems that will force us to do so. Indeed various
authors have suggested such systems but there is currently no consensus
on convincing candidates (Davis 2006). Dershowitz and Gurevich (2008)
claim to have vindicated the hypothesis, but this result is not generally
accepted (see the discussion on “Computability – What would it mean to
disprove the Church-Turing thesis”, in the Other Internet Resources
[OIR]).

Being Turing complete seems to be quite a natural condition for a (formal)
system. Any system that is sufficiently rich to represent the natural
numbers and elementary arithmetical operations is Turing complete. What
is needed is a finite set of operations defined on a set of discrete finite data
elements that is rich enough to make the system self-referential: its
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operations can be described by its data elements. This explains, in part,
why we can use mathematics to describe our world. The abstract notion of
computation defined as functions on numbers in the abstract world
mathematics and the concrete notion of computing by manipulation
objects in our every day world around us coincide. The concepts of
information end computation implied by the Recursive Function Paradigm
and the Symbol Manipulation Paradigm are the same.

Observation: If one accepts the fact that the Church-Turing thesis is
open, this implies that the question about the existence of a universal
notion of information is also open. At this stage of the research it is
not possible to specify the a priori conditions for such a general
theory.

5.3 Quantum Information and Beyond

We have a reasonable understanding of the concept of classical computing,
but the implications of quantum physics for computing and information
may determine the philosophical research agenda for decades to come if
not longer. Still it is already clear that the research has repercussions for
traditional philosophical positions: the Laplacian view (Laplace 1814
[1902]) that the universe is essentially deterministic seems to be falsified
by empirical observations. Quantum random generators are commercially
available (see Wikipedia entry on Hardware random number generator
[OIR]) and quantum fluctuations do affect neurological, biological and
physical processes at a macroscopic scale (Albrecht & Phillips 2014). Our
universe is effectively a process that generates information permanently.
Classical deterministic computing seems to be too weak a concept to
understand its structure.

Standard computing on a macroscopic scale can be defined as local,
sequential, manipulation of discrete objects according to deterministic
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rules. Is has a natural interpretation in operations on the set of natural
numbers N and a natural measurement function in the log operation 

 associating a real number to every natural number. The
definition gives us an adequate information measure for countable infinite
sets, including number classes like the integers , closed under
subtraction, and the rational numbers , closed under division.

The operation of multiplication with the associated logarithmic function
characterizes our intuitions about additivity of the concept of information
exactly. It leads to a natural bijection between the set of natural numbers 
and the set of multisets of numbers (i.e., sets of prime factors). The notion
of a multiset is associated with the properties of commutativity and
associativity. This program can be extended to other classes of numbers
when we study division algebras in higher dimensions. The following
table gives an overview of some relevant number classes together with the
properties of the operation of multiplication for these classes:

Number
Class

Symbol Dimen -
sions

Coun -
table

Linear Commu -
tative

Associ-
ative

Natural
numbers

1 Yes Yes Yes Yes

Integers 1 Yes Yes Yes Yes
Rational
numbers

1 Yes Yes Yes Yes

Real numbers 1 No Yes Yes Yes
Complex
numbers

2 No No Yes Yes

Quaternions 4 No No No Yes
Octonions 8 No No No No

The table is ordered in terms of increasing generality. Starting from the set
of natural numbers , various extensions are possible taking into account
closure under subtraction, , and division, . This are the number classes

log : ℕ → ℝ

ℤ
ℚ

ℕ

ℕ
ℤ
ℚ
ℝ
ℂ
ℍ
𝕆

ℕ
ℤ ℚ
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for which we have adequate finite symbolic representations on a
macroscopic scale. For elements of the reel numbers  such a
representations are not available. The real numbers  introduce the aspect
of manipulation of infinite amounts of information in one operation.

Observation: For almost all  we have .

More complex division algebras can be defined when we introduce
imaginary numbers as negative squares . We can now define
complex numbers: , where a is the real part and  the imaginary
part. Complex numbers can be interpreted as vectors in a two dimensional
plane. Consequently they lack the notion of a strict linear order between
symbols. Addition is quite straightforward:

Multiplication follows the normal distribution rule but the result is less
intuitive since it involves a negative term generated by :

In this context multiplication ceases to be a purely extensive operation:

Observation: Multiplication is not information efficient for imaginary
numbers. Specifically the equality  does not hold, as is
clear from the following example:

More complicated numbers systems with generalizations of this type of
multiplication in 4 and 8 dimensions can be defined. Kervaire (1958) and
Bott & Milnor (1958) independently proved that the only four division
algebras built on the reals are , ,  and , so the table gives a
comprehensive view of all possible algebra’s that define a notion of

ℝ
ℝ

e ∈ ℝ I(e) = ∞

= −1i2
a + bi bi

(a + bi) + (c + di) = (a + b) + (c + d)i

i2

(a + bi)(c + di) = (ac − bd) + (bc + ad)i

=xy‾‾√ x√ y√

1 = = ≠ = i × i = −11‾√ −1 × −1‾ ‾‾‾‾‾‾‾√ −1‾ ‾‾√ −1‾ ‾‾√

ℝ ℂ ℍ 𝕆
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extensiveness. For each of the number classes in the table a separate
theory of information measurement, based on the properties of
multiplication, can be developed. For the countable classes ,  and 
these theories ware equivalent to the standard concept of information
implied by the notion of Turing equivalence. Up to the real numbers these
theories satisfy our intuitive notions of extensiveness of information. For
complex numbers the notion of information efficiency of multiplication is
destroyed. The quaternions lack the property of commutativity and the
octonions that of associativity. These models are not just abstract
constructions since the algebras play an important role in our descriptions
of nature:

1. Complex numbers are used to specify the mathematical models of
quantum physics (Nielsen & Chuang 2000).

2. Quaternions do the same for Einstein’s special theory of relativity
(De Leo 1996).

3. Some physicists believe octonions form a theoretical basis for a
unified theory of strong and electromagnetic forces (e.g., Furey
2015).

We briefly discuss the application of vector spaces in quantum physics.
Classical information is measured in bits. Implementation of bits in nature
involves macroscopic physical systems with at least two different stable
states and a low energy reversible transition process (i.e., switches, relays,
transistors). The most fundamental way to store information in nature on
an atomic level involves qubits. The qubit is described by a state vector in
a two-level quantum-mechanical system, which is formally equivalent to a
two-dimensional vector space over the complex numbers (Von Neumann
1932; Nielsen & Chuang 2000). Quantum algorithms have, in some cases,
a fundamentally lower complexity (e.g., Shor’s algorithm for factorization
of integers (Shor 1997)).

ℕ ℤ ℚ
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Definition: The quantum bit, or qubit, is a generalization of the
classical bit. The quantum state of qubit is represented as the linear
superposition of two orthonormal basis vectors:

Here the so-called Dirac or “bra-ket” notion is used: where  and 
are pronounced as “ket 0” and “ket 1”. The two vectors together form
the computational basis , which defines a vector in a two-
dimensional Hilbert space. A combination of n qubits is represented
by a superposition vector in a  dimensional Hilbert space, e.g.:

A pure qubit is a coherent superposition of the basis states:

where  and  are complex numbers, with the constraint:

In this way the values can be interpreted as probabilities:  is the
probability that the qubit has value 0 and  is the probability that
the qubit has value 1.

Under this mathematical model our intuitions about computing as local,
sequential, manipulation of discrete objects according to deterministic
rules evolve in to a much richer paradigm:

|0⟩ = [ ] , |1⟩ = [ ]1
0

0
1

|0⟩ |1⟩

{|0⟩, |1⟩}

2n

|00⟩ = , |01⟩ = , |10⟩ = , |11⟩ =
⎡

⎣
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1
0
0
0

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

0
1
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⎤
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1. Infinite information The introduction of real numbers facilitates the
manipulation of objects of infinite descriptive complexity, although
there is currently no indication that this expressivity is actually
necessary in quantum physics.

2. Non-classical probability Complex numbers facilitate a richer notion
of extensiveness in which probabilities cease to be classical. The
third axiom of Kolmogorov loses its validity in favor of probabilities
that enhance or suppress each other, consequently extensiveness of
information is lost.

3. Superposition and Entanglement The representation of qubits in
terms of complex high dimensional vector spaces implies that qubits
cease to be isolated discrete objects. Quantum bits can be in
superposition, a situation in which they are in two discrete states at
the same time. Quantum bits fluctuate and consequently they
generate information. Moreover quantum states of qubits can be
correlated even when the information bearers are separated by a long
distance in space. This phenomenon, known as entanglement destroys
the property of locality of classical computing (see the entry on
quantum entanglement and information).

From this analysis it is clear that the description of our universe at very
small (and very large) scales involves mathematical models that are alien
to our experience of reality in everyday life. The properties that allow us
to understand the world (the existence of stable, discrete objects that
preserve their identity in space and time) seem to be emergent aspects of a
much more complex reality that is incomprehensible to us outside its
mathematical formulation. Yet, at a macroscopic level, the universe
facilitates elementary processes, like counting, measuring lengths, and the
manipulation of symbols, that allow us to develop a consistent hierarchy
of mathematical models some of which seems to describe the deeper
underlying structure of reality.
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In a sense the same mathematical properties that drove the development of
elementary accounting systems in Mesopotamia four thousand years ago,
still help us to penetrate in to the world of subatomic structures. In the past
decennia information seems to have become a vital concept in physics.
Seth Lloyd and others (Zuse 1969; Wheeler 1990; Schmidhuber 1997b;
Wolfram 2002; Hutter 2010) have analyzed computational models of
various physical systems. The notion of information seems to play a major
role in the analysis of black holes (Lloyd & Ng 2004; Bekenstein 1994
[OIR]). Erik Verlinde (2011, 2017) has proposed a theory in which gravity
is analyzed in terms of information. For the moment these models seem to
be purely descriptive without any possibility of empirical verification.

6. Anomalies, Paradoxes, and Problems

Some of the fundamental issues in philosophy of Information are closely
related to existing philosophical problems, others seem to be new. In this
paragraph we discuss a number of observations that may determine the
future research agenda. Some relevant questions are:

1. Are there uniquely identifying descriptions that do not contain all
information about the object they refer to?

2. Does computation create new information?
3. Is there a difference between construction and systematic search?

Since Frege most mathematicians seem to believe that the answer to the
first question is positive (Frege 1879, 1892). The descriptions “The
morning star” and “The evening star” are associated with procedures to
identify the planet Venus, but they do not give access to all information
about the object itself. If this were so the discovery that the evening star is
in fact also the morning star would be uninformative. If we want to
maintain this position we get into conflict, because in terms of information
theory the answer to the second question is negative (see section 5.1.7).
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Yet this observation is highly counter intuitive, because it implies that we
never can construct new information on the basis of deterministic
computation, which leads to the third question. These issues cluster around
one of the fundamental open problems of Philosophy of Information:

Open problem What is the interaction between Information and
Computation?

Why would we compute at all, if according to our known information
measures, deterministic computing does not produce new information?
The question could be rephrased as: should we use Kolmogorov or Levin
complexity (Levin 1973, 1974, 1984) as our basic information measure?
In fact both choices lead to relevant, but fundamentally different, theories
of information. When using the Levin measure, computing generates
information and the answer to the three questions above is a “yes”, when
using Kolmogorov this is not the case. The questions are related to many
problems both in mathematics and computer science. Related issues like
approximation, computability and partial information are also studied in
the context of Scott domains (Abramsky & Jung 1994). Below we discuss
some relevant observations.

6.1 The Paradox of Systematic Search

The essence of information is the fact that it reduces uncertainty. This
observation leads to problems in opaque contexts, for instance, when we
search an object. This is illustrated by Meno’s paradox (see entry on
epistemic paradoxes):

And how will you enquire, Socrates, into that which you do not
know? What will you put forth as the subject of enquiry? And if
you find what you want, how will you ever know that this is the
thing which you did not know? (Plato, Meno, 80d1-4)
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The paradox is related to other open problems in computer science and
philosophy. Suppose that John is looking for a unicorn. It is very unlikely
that unicorns exist, so, in terms of Shannon’s theory, John gets a lot of
information if he finds one. Yet from a descriptive Kolmogorov point of
view, John does not get new information, since he already knows what
unicorns are. The related paradox of systematic search might be
formulated as follows:

Any information that can be found by means of systematic search
has no value, since we are certain to find it, given enough time.
Consequently information only has value as long as we are
uncertain about its existence, but then, since we already know what
we are looking for, we get no new information when we find out
that it exists.

Example: Goldbach conjectured in 1742 that every even number
bigger than 2 could be written as the sum of two primes. Until
today this conjecture remains unproved. Consider the term “The
first number that violates Goldbach’s conjecture”. It does not give
us all information about the number, since the number might not
exist. The prefix “the first” ensures the description, if it exists, is
unique, and it gives us an algorithm to find the number. It is a
partial uniquely identifying description. This algorithm is only
effective if the number really exists, otherwise it will run forever. If
we find the number this will be great news, but from the
perspective of descriptive complexity the number itself will be
totally uninteresting, since we already know the relevant properties
to find it. Observe that, even if we have a number n that is a
counter example to Goldbach’s conjecture, it might be difficult to
verify this: we might have to check almost all primes . This can
be done effectively (we will always get a result) but not, as far as

≤ n
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A possible solution is to specify the constraint that it is illegal to measure
the information content of an object in terms of partial descriptions, but
this would destroy our theory of descriptive complexity. Note that the
complexity of an object is the length of the shortest program that produces
an object on a universal Turing machine. In this sense the phrase “the first
number that violates Goldbach’s conjecture” is a perfect description of a
program, and it adequately measures the descriptive complexity of such a
number. The short description reflects the fact that the number, if it exists,
is very special, and thus it has a high possibility to occur in some
mathematical context.

There are relations which well-studied philosophical problems like the
Anselm’s ontological argument for God’s existence and the Kantian
counter claim that existence is not a predicate. In order to avoid similar
problems Russell proposed to interpret unique descriptions existentially
(Russell 1905): A sentence like “The king of France is bold” would have
the following logical structure:

This interpretation does not help us to analyze decision problems that deal
with existence. Suppose the predicate L is true of x if I’m looking for x,
then the logical structure of the phrase “I’m looking for the king of
France” would be:

i.e., if the king of France does not exist it cannot be true that I am looking
for him, which is unsatisfactory. Kripke (1971) criticized Russell’s
solution and proposed his so-called causal theory of reference in which a

we know, efficiently (it might take “close” to n different
computations) .

∃(x)(KF(x) ∧ ∀(y)(KF(y) → x = y) ∧ B(x))

∃(x)(KF(x) ∧ ∀(y)(KF(y) → x = y) ∧ L(x)),
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name get its reference by an initial act of “baptism”. It then becomes a
rigid designator (see entry on rigid designators) that can be followed back
to that original act via causal chains. In this way ad hoc descriptions like
“John was the fourth person to step out of the elevator this morning” can
establish a semantics for a name.

In the context of mathematics and information theory the corresponding
concept is that of names, constructive predicates and ad-hoc predicates of
numbers. For any number there will be in principle an infinite number of
true statements about that number. Since elementary arithmetic is
incomplete there will be statements about numbers that are true but
unprovable. In the limit a vanishing fragment of numbers will have true
predicates that actually compress their description. Consider the following
statements:

1. The symbol “8” is the name for the number eight.
2. The number x is the 1000th Fibonacci number.
3. The number x is the first number that violates the Goldbach

conjecture.

The first statement simply specifies a name for a number. The second
statement gives a partial description that is constructive, information
compressing and unique. The 1000th Fibonacci number has 209 digits, so
the description “the 1000th Fibonacci number” is much more efficient than
the actual name of the number. Moreover, we have an algorithm to
construct the number. This might not be that case for the description in the
third statement. We do not know whether the first number that violates the
Goldbach conjecture exists, but if it does, the description might well be ad
hoc and thus gives us no clue to construct the number. This rise to the
conjecture that there are data compressing effective ad hoc descriptions:
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Conjecture: There exist numbers that are compressed by non-
constructive unique effective descriptions, i.e., the validity of the
description can be checked effectively given the number, but the
number cannot be constructed effectively from the description, except
by means of systematic search.

The conjecture is a more general variant of the so-called P vs. NP thesis
(see section 6.3). If one replaces the term “effective” with the term
“efficient” one gets a formulation of the  thesis.

6.2 Effective Search in Finite Sets

When we restrict ourselves to effective search in finite sets, the problem of
partial descriptions, and construction versus search remain. It seems
natural to assume that when one has a definition of a set of numbers, then
one also has all the information about the members of the set and about its
subsets, but this is not true. In general the computation of the amount of
information in a set of numbers is a highly non-trivial issue. We give some
results:

Lemma A subset  of a Sset can contain more information
conditional to the set than the set itself.

Proof: Consider the set S of all natural numbers smaller than n. The
descriptive complexity of this set in bits is . Now construct A by
selecting half of the elements of S randomly. Observe that:

We have:

P ≠ NP

A ⊂ S

n + clog2

I(A ∣ S) = ( )log2
n

n/2

= = 1lim
n→∞

I(A ∣ S)
n

lim
n→∞

( )log2
n

n/2
n
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The conditional descriptive complexity of this set will be: 
. 

A direct consequence is that we can lose information when we merge two
sets. An even stronger result is:

Lemma: An element of a set can contain more information than the
set itself.

Proof: Consider the set S of natural numbers smaller then . The
cardinality of S is . The descriptive complexity of this set is 
bits, but for half of the elements of S we need n bits to describe them. 

In this case the description of the set itself is highly compressible, but it
still contains non-compressible elements. When we merge or split sets of
numbers, or add or remove elements, the effects on the amount of
information are in general hard to predict and might even be
uncomputable:

Theorem: Information is not monotone under set theoretical
operations

Proof: Immediate consequence of the lemmas above. 

This shows how the notion of information pervades our everyday life.
When John has two apples in his pocket it seems that he can do whatever
he wants with them, but, in fact, as soon as he chooses one of the two, he
has created (new) information. The consequences for search problems are
clear: we can always effectively perform bounded search on the elements
and the set of subsets of a set. Consequently when we search for such a set
of subsets by means of partial descriptions then the result generates (new)
information. This analysis prima facie appears to force us to accept that in
mathematics there are simple descriptions that allow us to identify

I(A ∣ S) ≈ n + c ≫ log n + c ◻

2n

2n log n + c
◻

◻
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complex objects by means of systematic search. When we look for the
object we have only little information about it, when we finally find it our
information increases to the set of full facts about the object searched.
This is in conflict with our current theories of information (Shannon and
Kolmogorov): any description that allows us to identify an object
effectively by deterministic search contains all relevant information about
the object. The time complexity of the search process then is irrelevant.

6.3 The P versus NP Problem, Descriptive Complexity Versus
Time Complexity

In the past decennia mathematicians have been pondering about a related
question: suppose it would be easy to check whether I have found what
I’m looking for, how hard can it be to find such an object? In mathematics
and computer science there seems to be a considerable class of decision
problems that cannot be solved constructively in polynomial time, 

, where c is a constant and x is the length of the input), but only
through systematic search of a large part of the solution space, which
might take exponential time, . This difference roughly coincides
with the separation of problems that are computationally feasible from
those that are not.

The issue of the existence of such problems has been framed as the
possible equivalence of the class P of decision problems that can be solved
in time polynomial to the input to the class NP of problems for which the
solution can be checked in time polynomial to the input. (Garey &
Johnson 1979; see also Cook 2000 [OIR] for a good introduction.)

Example: A well-known example in the class NP is the so-called
subset sum problem: given a finite set of natural numbers S, is there a
subset  that sums up to some number k? It is clear that when
someone proposes a solution  to this problem we can easily

t(x) = xc

t(x) = cx

⊆ SS′

X ⊆ S
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check whether the elements of X add up to k, but we might have to
check almost all subsets of S in order to find such a solution ourselves.

This is an example of a so-called decision problem. The answer is a simple
“yes” or “no”, but it might be hard to find the answer. Observe that the
formulation of the question conditional to S has descriptive complexity 

, whereas most random subsets of S have a conditional
descriptive complexity of . So any subset  that adds up to k might
have a descriptive complexity that is bigger then the formulation of the
search problem. In this sense search seems to generate information. The
problem is that if such a set exists the search process is bounded, and thus
effective, which means that the phrase “the first subset of S that adds up to
k” is an adequate description. If  then the Kolmogorov complexity
and the Levin complexity of the set  we find roughly coincide, if 

 then in some cases . Both positions, the theory
that search generates new information and the theory that it does not, are
counterintuitive from different perspectives.

The P vs. NP problem, that appears to be very hard, has been a rich source
of research in computer science and mathematics although relatively little
has been published on its philosophical relevance. That a solution might
have profound philosophical impact is illustrated by a quote from Scott
Aaronson:

log k + c
|S| S′

P = NP
S′

P ≠ NP Kt( ) ≫ K( )S′ S′

If P = NP, then the world would be a profoundly different place
than we usually assume it to be. There would be no special value in
“creative leaps,” no fundamental gap between solving a problem
and recognizing the solution once it’s found. Everyone who could
appreciate a symphony would be Mozart; everyone who could
follow a step-by-step argument would be Gauss…. (Aaronson
2006 – in the Other Internet Resources)
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In fact, if  then every object that is easy to describe and easy to
check is easy to find.

6.4 Model Selection and Data Compression

In current scientific methodology the sequential aspects of the scientific
process are formalized in terms of the empirical cycle, which according to
de Groot (1969) has the following stages:

1. Observation: The observation of a phenomenon and inquiry
concerning its causes.

2. Induction: The formulation of hypotheses—generalized explanations
for the phenomenon.

3. Deduction: The formulation of experiments that will test the
hypotheses (i.e., confirm them if true, refute them if false).

4. Testing: The procedures by which the hypotheses are tested and data
are collected.

5. Evaluation: The interpretation of the data and the formulation of a
theory—an abductive argument that presents the results of the
experiment as the most reasonable explanation for the phenomenon.

In the context of information theory the set of observations will be a data
set and we can construct models by observing regularities in this data set.
Science aims at the construction of true models of our reality. It is in this
sense a semantical venture. In the 21-st century the process of theory
formation and testing will for the largest part be done automatically by
computers working on large databases with observations. Turing award
winner Jim Grey framed the emerging discipline of e-science as the fourth
data-driven paradigm of science. The others are empirical, theoretical and
computational. As such the process of automatic theory construction on
the basis of data is part of the methodology of science and consequently of
philosophy of information (Adriaans & Zantinge 1996; Bell, Hey, &

P = NP
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Szalay 2009; Hey, Tansley, and Tolle 2009). Many well-known learning
algorithms, like decision tree induction, support vector machines,
normalized information distance and neural networks, use entropy based
information measures to extract meaningful and useful models out of large
data bases. The very name of the discipline Knowledge Discovery in
Databases (KDD) is witness to the ambition of the Big Data research
program. We quote:

Much of the current research focuses on the issue of selecting an optimal
computational model for a data set. The theory of Kolmogorov complexity
is an interesting methodological foundation to study learning and theory
construction as a form of data compression. The intuition is that the
shortest theory that still explains the data is also the best model for
generalization of the observations. A crucial distinction in this context is
the one between one- and two-part code optimization:

One-part Code Optimization: The methodological aspects of the
theory of Kolmogorov complexity become clear if we follow its
definition. We begin with a well-formed dataset y and select an

At an abstract level, the KDD field is concerned with the
development of methods and techniques for making sense of data.
The basic problem addressed by the KDD process is one of
mapping low-level data (which are typically too voluminous to
understand and digest easily) into other forms that might be more
compact (for example, a short report), more abstract (for example,
a descriptive approximation or model of the process that generated
the data), or more useful (for example, a predictive model for
estimating the value of future cases). At the core of the process is
the application of specific data-mining methods for pattern
discovery and extraction. (Fayyad, Piatetsky-Shapiro, & Smyth
1996: 37)

( x) = yj
⎯ ⎯⎯⎯⎯
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appropriate universal machine . The expression  is a
true sentence that gives us information about y. The first move in the
development of a theory of measurement is to force all
expressiveness to the instructional or procedural part of the sentence
by a restriction to sentences that describe computations on empty
input:

This restriction is vital for the proof of invariance. From this, in
principle infinite, class of sentences we can measure the length when
represented as a program. We select the ones (there might be more
than one) of the form  that are shortest. The length  of such a
shortest description is a measure for the information content of y. It is
asymptotic in the sense that, when the data set y grows to an infinite
length, the information content assigned by the choice of another
Turing machine will never vary by more than a constant in the limit.
Kolmogorov complexity measures the information content of a data
set in terms of the shortest description of the set of instructions that
produces the data set on a universal computing device.

Two-part Code Optimization: Note that by restricting ourselves to
programs with empty input and the focus on the length of programs
instead of their content we gain the quality of invariance for our
measure, but we also lose a lot of expressiveness. The information in
the actual program that produces the data set is neglected. Subsequent
research therefore has focused on techniques to make the explanatory
power, hidden in the Kolmogorov complexity measure, explicit.

A possible approach is suggested by an interpretation of Bayes’ law. If we
combine Shannon’s notion of an optimal code with Bayes’ law, we get a
rough theory about optimal model selection. Let  be a set of hypotheses

Uj ( x) = yUj Ti
⎯ ⎯⎯⎯⎯

( ∅) = yUj Ti
⎯ ⎯⎯⎯⎯

Ti
⎯ ⎯⎯⎯⎯

l( )Ti
⎯ ⎯⎯⎯⎯
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and let x be a data set. Using Bayes’ law, the optimal computational model
under this distribution would be:

This is equivalent to optimizing:

Here  can be interpreted as the length of the optimal model
code in Shannon’s sense and  as the length of the optimal
data-to-model code; i.e., the data interpreted with help of the model. This
insight is canonized in the so-called:

Minimum Description Length (MDL) Principle: The best theory to
explain a data set is the one that minimizes the sum in bits of a
description of the theory (model code) and of the data set encoded
with the theory (the data to model code).

The MDL principle is often referred to as a modern version of Ockham’s
razor (see entry on William of Ockham), although in its original form
Ockham’s razor is an ontological principle and has little to do with data
compression. In many cases MDL is a valid heuristic tool and the
mathematical properties of the theory have been studied extensively
(Grünwald 2007). Still MDL, Ockham’s razor and two-part code
optimization have been the subject of considerable debate in the past
decennia (e.g., Domingos 1998; McAllister 2003).

The philosophical implications of the work initiated by Solomonoff,
Kolmogorov and Chaitin in the sixties of the 20-th century are
fundamental and diverse. The universal distribution m proposed by
Solomonoff, for instance, codifies all possible mathematical knowledge
and when updated on the basis of empirical observations would in

(x) =Mmap argmaxM∈

P(M)P(x ∣ M)
P(x)

− log P(M) − log P(x ∣ M)argminM∈

− log P(M)
− log P(x ∣ M)
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principle converge to an optimal scientific model of our world. In this
sense the choice of a universal Turing machine as basis for our theory of
information measurement has philosophical importance, specifically for
methodology of science. A choice for a universal Turing machine can be
seen as a choice of a set of bias for our methodology. There are roughly
two schools:

Poor machine: choose a small universal Turing machine. If the
machine is small it is also general and universal, since there is no
room to encode any bias in to the machine. Moreover a restriction to
small machines gives small overhead when emulating one machine
on the other so the version of Kolmogorov complexity you get gives
a measurement with a smaller asymptotic margin. Hutter explicitly
defends the choice of “natural” small machines (Hutter 2005;
Rathmanner & Hutter 2011), but also Li and Vitányi (2008) seem to
suggest the use of small models.
Rich machine: choose a big machine that explicitly reflects what you
already know about the world. For Solomonoff, the inventor of
algorithmic complexity, the choice of a universal Turing machine is
the choice for a universal prior. He defends an evolutionary approach
to learning in which an agent constantly adapts the prior to what he
already has discovered. The selection of your reference Turing
machine uniquely characterizes your a priori information
(Solomonoff 1997).

Both approaches have their value. For rigid mathematical proofs the poor
machine approach is often best. For practical applications on finite data
sets the rich model strategy often gets much better results, since a poor
machine would have to “re-invent the wheel” every time it compresses a
data set. This leads to the conclusion that Kolmogorov complexity
inherently contains a theory about scientific bias and as such implies a
methodology in which the class of admissible universal models should be
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explicitly formulated and motivated a priori. In the past decennia there
have been a number of proposals to define a formal unit of measurement
of the amount of structural (or model-) information in a data set.

Aesthetic measure (Birkhoff 1950)
Sophistication (Koppel 1987; Antunes et al. 2006; Antunes &
Fortnow 2003)
Logical Depth (Bennet 1988)
Effective complexity (Gell-Mann, Lloyd 2003)
Meaningful Information (Vitányi 2006)
Self-dissimilarity (Wolpert & Macready 2007)
Computational Depth (Antunes et al. 2006)
Facticity (Adriaans 2008)

Three intuitions dominate the research. A string is “interesting” when …

a certain amount of computation is involved in its creation
(Sophistication, Computational Depth);
there is a balance between the model-code and the data-code under
two-part code optimization (effective complexity, facticity);
it has internal phase transitions (self-dissimilarity).

Such models penalize both maximal entropy and low information content.
The exact relationship between these intuitions is unclear. The problem of
meaningful information has been researched extensively in the past years,
but the ambition to formulate a universal method for model selection
based on compression techniques seems to be misguided:

Observation: A measure of meaningful information based on two-part
code optimization can never be invariant in the sense of Kolmogorov
complexity (Bloem et al. 2015), even if we restrict the underlying
theory to total primitive recursive functions (Adriaans
forthcoming***not in bib*).
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There seems to be no a priori mathematical justification for the approach,
although two-part code optimization continues to be a valid approach in an
empirical setting of data sets that have been created on the basis of
repeated observations. Phenomena that might be related to a theory of
structural information and that currently are ill-understood are: phase
transitions in the hardness of satisfiability problems related to their
complexity (Simon & Dubois 1989; Crawford & Auton 1993) and phase
transitions in the expressiveness of Turing machines related to their
complexity (Crutchfield & Young 1989, 1990; Langton 1990; Dufort &
Lumsden 1994).

6.5 Determinism and Thermodynamics

Many basic concepts of information theory were developed in the
nineteenth century in the context of the emerging science of
thermodynamics. There is a reasonable understanding of the relationship
between Kolmogorov Complexity and Shannon information (Li & Vitányi
2008; Grünwald & Vitányi 2008; Cover & Thomas 2006), but the
unification between the notion of entropy in thermodynamics and
Shannon-Kolmogorov information is very incomplete apart from some
very ad hoc insights (Harremoës & Topsøe 2008; Bais & Farmer 2008).
Fredkin and Toffoli (1982) have proposed so-called billiard ball computers
to study reversible systems in thermodynamics (Durand-Lose 2002) (see
the entry on information processing and thermodynamic entropy). Possible
theoretical models could with high probability be corroborated with
feasible experiments (e.g., Joule’s adiabatic expansion, see Adriaans
2008).

Questions that emerge are:

What is a computational process from a thermodynamical point of
view?
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Can a thermodynamic theory of computing serve as a theory of non-
equilibrium dynamics?
Is the expressiveness of real numbers necessary for a physical
description of our universe?

These problems seem to be hard because 150 years of research in
thermodynamics still leaves us with a lot of conceptual unclarities in the
heart of the theory of thermodynamics itself (see entry on thermodynamic
asymmetry in time).

Real numbers are not accessible to us in finite computational processes yet
they do play a role in our analysis of thermodynamic processes. The most
elegant models of physical systems are based on functions in continuous
spaces. In such models almost all points in space carry an infinite amount
of information. Yet, the cornerstone of thermodynamics is that a finite
amount of space has finite entropy. There is, on the basis of the theory of
quantum information, no fundamental reason to assume that the
expressiveness of real numbers is never used in nature itself on this level.
This problem is related to questions studied in philosophy of mathematics
(an intuitionistic versus a more platonic view). The issue is central in some
of the more philosophical discussions on the nature of computation and
information (Putnam 1988; Searle 1990). The problem is also related to
the notion of phase transitions in the description of nature (e.g.,
thermodynamics versus statistical mechanics) and to the idea of levels of
abstraction (Floridi 2002).

In the past decade some progress has been made in the analysis of these
questions. A basic insight is that the interaction between time and
computational processes can be understood at an abstract mathematical
level, without the burden of some intended physical application (Adriaans
& van Emde Boas 2011). Central is the insight that deterministic programs
do not generate new information. Consequently deterministic
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computational models of physical systems can never give an account of
the growth of information or entropy in nature:

Observation: The Laplacian assumption that the universe can be
described as a deterministic computer is, given the fundamental
theorem of Adriaans and van Emde Boas (2011) and the assumption
that quantum physics as a essentially stochastic description of the
structure of our reality, incorrect.

A statistical reduction of thermodynamics to a deterministic theory like
Newtonian physics leads to a notion of entropy that is fundamentally
different from the information processed by deterministic computers. From
this perspective the mathematical models of thermodynamics, which are
basically differential equations on spaces of real numbers, seem to operate
on a level that is not expressive enough. More advanced mathematical
models, taking in to account quantum effects, might resolve some of the
conceptual difficulties. At a subatomic level nature seems to be inherently
probabilistic. If probabilistic quantum effects play a role in the behavior of
real billiard balls, then the debate whether entropy increases in an abstract
gas, made out of ideal balls, seems a bit academic. There is reason to
assume that stochastic phenomena at quantum level are a source of
probability at a macroscopic scale (Albrecht & Phillips 2014). From this
perspective the universe is a constant source of, literally, astronomical
amounts of information at any scale.

6.6 Logic and Semantic Information

Logical and computational approaches to the understanding of information
both have their roots in the “linguistic turn” that characterized the
philosophical research in the beginning of the twentieth century and the
elementary research questions originate from the work of Frege (1879,
1892, see the entry on logic and information). The ambition to quantify
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information in sets of true sentences, as apparent in the work of
researchers like Popper, Carnap, Solomonoff, Kolmogorov, Chaitin,
Rissanen, Koppel, Schmidthuber, Li, Vitányi and Hutter is an inherently
semantic research program. In fact, Shannon’s theory of information is the
only modern approach that explicitly claims to be non-semantic. More
recent quantitative information measures like Kolmogorov complexity
(with its ambition to codify all scientific knowledge in terms of a universal
distribution) and quantum information (with its concept of observation of
physical systems) inherently assume a semantic component. At the same
time it is possible to develop quantitative versions of semantic theories
(see entry on semantic conceptions of information).

The central intuition of algorithmic complexity theory that an intension or
meaning of an object can be a computation, was originally formulated by
Frege (1879, 1892). The expressions “1 + 4” and “2 + 3” have the same
extension (Bedeutung) “5”, but a different intension (Sinn). In this sense
one mathematical object can have an infinity of different meanings. There
are opaque contexts in which such a distinction is necessary. Consider the
sentence “John knows that ”. Clearly the fact that 
represents a specific computation is relevant here. The sentence “John
knows that ” seems to have a different meaning.

Dunn (2001, 2008) has pointed out that the analysis of information in
logic is intricately related to the notions of intension and extension. The
distinction between intension and extension is already anticipated in the
Port Royal Logic (1662) and the writings of Mill (1843), Boole (1847) and
Peirce (1868) but was systematically introduced in logic by Frege (1879,
1892). In a modern sense the extension of a predicate, say “X is a
bachelor”, is simply the set of bachelors in our domain. The intension is
associated with the meaning of the predicate and allows us to derive from
the fact that “John is a bachelor” the facts that “John is male” and “John is
unmarried”. It is clear that this phenomenon has a relation with both the

= 2log2 22 log2 22

2 = 2
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possible world interpretation of modal operators and the notion of
information. A bachelor is by necessity also male, i.e., in every possible
world in which John is a bachelor he is also male, consequently: If
someone gives me the information that John is a bachelor I get the
information that he is male and unmarried for free.

The possible world interpretation of modal operators (Kripke 1959) is
related to the notion of “state description” introduced by Carnap (1947). A
state description is a conjunction that contains exactly one of each atomic
sentence or its negation (see section 4.3). The ambition to define a good
probability measure for state descriptions was one of the motivations for
Solomonoff (1960, 1997) to develop algorithmic information theory. From
this perspective Kolmogorov complexity, with its separation of data types
(programs, data, machines) and its focus on true sentences describing
effects of processes is basically a semantic theory. This is immediately
clear if we evaluate the expression:

As is explained in section 5.2.1 the expression  denotes the result
of the emulation of the computation  by  after reading the self-
delimiting description  of machine . This expression can be interpreted
as a piece of semantic information in the context of the informational map
(See entry on semantic conceptions of information) as follows:

The universal Turing machine  is a context is which the
computation takes place. It can be interpreted as a possible
computational world in a modal interpretation of computational
semantics.
The sequences of symbols  and y are well-formed data.
The sequence  is a self-delimiting description of a program and it
can be interpreted as a piece of well-formed instructional data.

( x) = yUj Ti
⎯ ⎯⎯⎯⎯

( x)Uj Ti
⎯ ⎯⎯⎯⎯

(x)Ti Uj

Ti
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Tj

Uj

xTi
⎯ ⎯⎯⎯⎯

Ti
⎯ ⎯⎯⎯⎯

x
⎯ ⎯⎯⎯⎯
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The sequence  is an intension. The sequence y is the
corresponding extension.
The expression  states the result of the program  in
world  is y. It is a true sentence.

The logical structure of the sentence  is comparable to a true
sentence like:

In the context of empirical observations on planet earth, the bright star
you can see in the morning in the eastern sky is Venus

Mutatis mutandis one could develop the following interpretation:  can
be seen as a context that, for instance, codifies a bias for scientific
observations on earth, y is the extension Venus,  is the intension “the
bright star you can see in the morning in the eastern sky”. The intension
consists of , which can be interpreted as some general astronomical
observation routine (e.g., instructional data), and x provides the well-
formed data that tells one where to look (bright star in the morning in the
eastern sky).

This suggests a possible unification between more truth oriented theories
of information and computational approaches in terms of the informational
map presented in the entry of semantic conceptions of information. We
delineate some research questions:

What is a good logical system (or set of systems) that formalizes our
intuitions of the relation between concepts like “knowing”,
“believing” and “being informed of”. There are proposals by: Dretske
(1981), van Benthem (2006; van Benthem & de Rooij 2003), Floridi
(2003, 2011) and others. A careful mapping of these concepts onto
our current landscape of known logics (structural, modal) might
clarify the strengths and weaknesses of different proposals.

xTi
⎯ ⎯⎯⎯⎯

( x) = yUj Ti
⎯ ⎯⎯⎯⎯

xTi
⎯ ⎯⎯⎯⎯

Uj

( x) = yUj Ti
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xTi
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It is unclear what the specific difference (in the Aristotelian sense) is
that separates environmental data from other data, e.g., if one uses
pebbles on a beach to count the number of dolphins one has
observed, then it might be impossible for the uninformed passer by to
judge whether this collection of stones is environmental data or not.
The category of instructional data seems to be too narrow since it
pins us down on a specific interpretation of what computing is. For
the most part Turing equivalent computational paradigms are not
instructional, although one might defend the view that programs for
Turing machines are such data.
It is unclear how we can cope with the ontological duality that is
inherent to the self referential aspects of Turing complete systems:
Turing machines operate on data that at the same time act as
representations of programs, i.e., instructional and non-instructional.
It is unclear how a theory that defines information exclusively in
terms of true statements can deal with fundamental issues in quantum
physics. How can an inconsistent logical model in which
Schrodinger's cat is at the same time dead and alive contain any
information in such a theory?

6.7 Meaning and Computation

Ever since Descartes, the idea that the meaningful world, we perceive
around us, can be reduced to physical processes has been a predominant
theme in western philosophy. The corresponding philosophical self-
reflection in history neatly follows the technical developments from: Is the
human mind an automaton, to is the mind a Turing machine and,
eventually, is the mind a quantum computer? It is not the place here to
discuss these matters extensively, but the corresponding problem in
philosophy of information is relevant:

Open problem: Can meaning be reduced to computation?
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The question is interwoven with more general issues in philosophy and its
answer directly forces a choice between a more positivistic or a more
hermeneutical approach to philosophy, with consequences for theory of
knowledge, metaphysics, aesthetics and ethics. It also effects direct
practical decisions we take on a daily basis. Should the actions of a
medical doctor be guided by evidence based medicine or by the notion of
caritas? Is a patient a conscious human being that wants to lead a
meaningful life, or is he ultimately just a system that needs to be repaired?

The idea that meaning is essentially a computational phenomenon may
seem extreme, but here are many discussions and theories in science,
philosophy and culture that implicitly assume such a view. In popular
culture, e.g., there is a remarkable collection of movies and books in
which we find evil computers that are conscious of themselves (2001, A
Space Odyssey), individuals that upload their consciousness to a computer
(1992, The Lawnmower Man), and fight battles in virtual realities (1999,
The Matrix). In philosophy the position of Bostrom (2003), who defends
the view that it is very likely that we already live in a computer
simulation, is illustrative. There are many ways to argue the pros and cons
of the reduction of meaning to computation. We give an overview of
possible arguments for the two extreme positions:

Meaning is an emergent aspect of computation: Science is our best
effort to develop a valid objective theoretical description of the
universe based on intersubjectively verifiable repeated observations.
Science tells us that our reality at a small scale consists of elementary
particles whose behavior is described by exact mathematical models.
At an elementary level these particles interact and exchange
information. These processes are essentially computational. At this
most basic level of description there is no room for a subjective
notion of meaning. There is no reason to deny that we as human
being experience a meaningful world, but as such this must be an
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emergent aspect of nature. At a fundamental level it does not exist.
We can describe our universe as a big quantum computer. We can
estimate the information storage content of our universe to be 
bits and the number of computational steps it made since the big bang
as  (Lloyd 2000; Lloyd & Ng 2004). As human beings we are
just subsystems of the universe with an estimated complexity of
roughly  bits. It might be technically impossible, but there seems
to be no theoretical objection against the idea that we can in principle
construct an exact copy of a human being, either as a direct physical
copy or as a simulation in a computer. Such an “artificial” person will
experience a meaningful world, but the experience will be emergent.

Meaning is ontologically rooted in our individual experience of the
world and thus irreducible: The reason scientific theories eliminate
most semantic aspects of our world, is caused by the very nature of
methodology of science itself. The essence of meaning and the
associated emotions is that they are rooted in our individual
experience of the world. By focusing on repeated observations of
similar events by different observers scientific methodology excludes
the possibility of an analysis of the concept of meaning a priori.
Empirical scientific methodology is valuable in the sense that it
allows us to abstract from the individual differences of conscious
observers, but there is no reason to reduce our ontology to the
phenomena studied by empirical science. Isolated individual events
and observations are by definition not open to experimental analysis
and this seems to be the point of demarcation between science and
the humanities. In disciplines like history, literature, visual art and
ethics we predominantly analyze individual events and individual
objects. The closer these are to our individual existence, the more
meaning they have for us. There is no reason to doubt the fact that
sentences like “Guernica is a masterpiece that shows the atrocities of
war” or “McEnroe played such an inspired match that he deserved to
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win” uttered in the right context convey meaningful information. The
view that this information content ultimately should be understood in
terms of computational processes seems too extreme to be viable.

Apart from that, a discipline like physics, that until recently overlooked
about 68% of the energy in the universe and 27% of the matter, that has no
unified theory of elementary forces and only explains the fundamental
aspects of our world in terms of mathematical models that lack any
intuitive foundation, for the moment does not seem to converge to a model
that could be an adequate basis for a reductionistic metaphysics.

As soon as one defines information in terms of true statements, some
meanings become computational and others lack that feature. In the
context of empirical science we can study groups of researchers that aim at
the construction of theories generalizing structural information in data sets
of repeated observations. Such processes of theory construction and
intersubjective verification and falsification have an inherent
computational component. In fact, this notion of intersubjective
verification seems an essential element of mathematics. This is the main
cause of the fact that central questions of humanities are not open for
quantitative analysis: We can disagree on the question whether one
painting is more beautiful than the other, but not on the fact that there are
two paintings.

It is clear that computation as a conceptual model pays a role in many
scientific disciplines varying from cognition (Chater & Vitányi 2003), to
biology (see entry on biological information) and physics (Lloyd & Ng
2004; Verlinde 2011, 2017). Extracting meaningful models out of data sets
by means of computation is the driving force behind the Big Data
revolution (Adriaans & Zantinge 1996; Bell, Hey, & Szalay 2009; Hey,
Tansley, & Tolle 2009). Everything that multinationals like Google and
Facebook “know” about individuals is extracted from large data bases by
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means of computational processes, and it cannot be denied that this kind
of “knowledge” has a considerable amount of impact on society. The
research question “How can we construct meaningful data out of large
data sets by means of computation?” is a fundamental meta-problem of
science in the twenty-first century and as such part of philosophy of
information, but there is no strict necessity for a reductionistic view.

7. Conclusion

The first domain that could benefit from philosophy of information is of
course philosophy itself. The concept of information potentially has an
impact on almost all philosophical main disciplines, ranging from logic,
theory of knowledge, to ontology and even ethics and esthetics (see
introduction above). Philosophy of science and philosophy of information,
with their interest in the problem of induction and theory formation,
probably both could benefit from closer cooperation (see 4.1 Popper:
Information as degree of falsifiability). The concept of information plays
an important role in the history of philosophy that is not completely
understood (see 2. History of the term and the concept of information).

As information has become a central issue in almost all of the sciences and
humanities this development will also impact philosophical reflection in
these areas. Archaeologists, linguists, physicists, astronomers all deal with
information. The first thing a scientist has to do before he can formulate a
theory is gathering information. The application possibilities are abundant.
Datamining and the handling of extremely large data sets seems to be an
essential for almost every empirical discipline in the twenty-first century.

In biology we have found out that information is essential for the
organization of life itself and for the propagation of complex organisms
(see entry on biological information). One of the main problems is that
current models do not explain the complexity of life well. Valiant has
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started a research program that studies evolution as a form of
computational learning (Valiant 2009) in order to explain this discrepancy.
Aaronson (2013) has argued explicitly for a closer cooperation between
complexity theory and philosophy.

Until recently the general opinion was that the various notions of
information were more or less isolated but in recent years considerable
progress has been made in the understanding of the relationship between
these concepts. Cover and Thomas (2006), for instance, see a perfect
match between Kolmogorov complexity and Shannon information. Similar
observations have been made by Grünwald and Vitányi (2008). Also the
connections that exist between the theory of thermodynamics and
information theory have been studied (Bais & Farmer 2008; Harremoës &
Topsøe 2008) and it is clear that the connections between physics and
information theory are much more elaborate than a mere ad hoc similarity
between the formal treatment of entropy and information suggests (Gell-
Mann & Lloyd 2003; Verlinde (2011, 2017). Quantum computing is at this
moment not developed to a point where it is effectively more powerful
than classical computing, but this threshold might be passed in the coming
years. From the point of view of philosophy many conceptual problems of
quantum physics and information theory seem to merge into one field of
related questions:

What is the relation between information and computation?
Is computation in the real world fundamentally non-deterministic?
What is the relation between symbol manipulation on a macroscopic
scale and the world of quantum physics?
What is a good model of quantum computing and how do we control
its power?
Is there information beyond the world of quanta?
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The notion of information has become central in both our society and in
the sciences. Information technology plays a pivotal role in the way we
organize our lives. It also has become a basic category in the sciences and
the humanities. Philosophy of information, both as a historical and a
systematic discipline, offers a new perspective on old philosophical
problems and also suggests new research domains.
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